Step |
Hyp |
Ref |
Expression |
1 |
|
euotd.1 |
|- ( ph -> A e. U ) |
2 |
|
euotd.2 |
|- ( ph -> B e. V ) |
3 |
|
euotd.3 |
|- ( ph -> C e. W ) |
4 |
|
euotd.4 |
|- ( ph -> ( ps <-> ( a = A /\ b = B /\ c = C ) ) ) |
5 |
4
|
biimpa |
|- ( ( ph /\ ps ) -> ( a = A /\ b = B /\ c = C ) ) |
6 |
|
vex |
|- a e. _V |
7 |
|
vex |
|- b e. _V |
8 |
|
vex |
|- c e. _V |
9 |
6 7 8
|
otth |
|- ( <. a , b , c >. = <. A , B , C >. <-> ( a = A /\ b = B /\ c = C ) ) |
10 |
5 9
|
sylibr |
|- ( ( ph /\ ps ) -> <. a , b , c >. = <. A , B , C >. ) |
11 |
10
|
eqeq2d |
|- ( ( ph /\ ps ) -> ( x = <. a , b , c >. <-> x = <. A , B , C >. ) ) |
12 |
11
|
biimpd |
|- ( ( ph /\ ps ) -> ( x = <. a , b , c >. -> x = <. A , B , C >. ) ) |
13 |
12
|
impancom |
|- ( ( ph /\ x = <. a , b , c >. ) -> ( ps -> x = <. A , B , C >. ) ) |
14 |
13
|
expimpd |
|- ( ph -> ( ( x = <. a , b , c >. /\ ps ) -> x = <. A , B , C >. ) ) |
15 |
14
|
exlimdv |
|- ( ph -> ( E. c ( x = <. a , b , c >. /\ ps ) -> x = <. A , B , C >. ) ) |
16 |
15
|
exlimdvv |
|- ( ph -> ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) -> x = <. A , B , C >. ) ) |
17 |
|
tru |
|- T. |
18 |
2
|
adantr |
|- ( ( ph /\ a = A ) -> B e. V ) |
19 |
3
|
ad2antrr |
|- ( ( ( ph /\ a = A ) /\ b = B ) -> C e. W ) |
20 |
|
simpr |
|- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> ( a = A /\ b = B /\ c = C ) ) |
21 |
20 9
|
sylibr |
|- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> <. a , b , c >. = <. A , B , C >. ) |
22 |
21
|
eqcomd |
|- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> <. A , B , C >. = <. a , b , c >. ) |
23 |
4
|
biimpar |
|- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> ps ) |
24 |
22 23
|
jca |
|- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
25 |
|
trud |
|- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> T. ) |
26 |
24 25
|
2thd |
|- ( ( ph /\ ( a = A /\ b = B /\ c = C ) ) -> ( ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
27 |
26
|
3anassrs |
|- ( ( ( ( ph /\ a = A ) /\ b = B ) /\ c = C ) -> ( ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
28 |
19 27
|
sbcied |
|- ( ( ( ph /\ a = A ) /\ b = B ) -> ( [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
29 |
18 28
|
sbcied |
|- ( ( ph /\ a = A ) -> ( [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
30 |
1 29
|
sbcied |
|- ( ph -> ( [. A / a ]. [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> T. ) ) |
31 |
17 30
|
mpbiri |
|- ( ph -> [. A / a ]. [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
32 |
31
|
spesbcd |
|- ( ph -> E. a [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
33 |
|
nfcv |
|- F/_ b B |
34 |
|
nfsbc1v |
|- F/ b [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
35 |
34
|
nfex |
|- F/ b E. a [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
36 |
|
sbceq1a |
|- ( b = B -> ( [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
37 |
36
|
exbidv |
|- ( b = B -> ( E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> E. a [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
38 |
33 35 37
|
spcegf |
|- ( B e. V -> ( E. a [. B / b ]. [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) -> E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
39 |
2 32 38
|
sylc |
|- ( ph -> E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
40 |
|
nfcv |
|- F/_ c C |
41 |
|
nfsbc1v |
|- F/ c [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
42 |
41
|
nfex |
|- F/ c E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
43 |
42
|
nfex |
|- F/ c E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) |
44 |
|
sbceq1a |
|- ( c = C -> ( ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
45 |
44
|
2exbidv |
|- ( c = C -> ( E. b E. a ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
46 |
40 43 45
|
spcegf |
|- ( C e. W -> ( E. b E. a [. C / c ]. ( <. A , B , C >. = <. a , b , c >. /\ ps ) -> E. c E. b E. a ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
47 |
3 39 46
|
sylc |
|- ( ph -> E. c E. b E. a ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
48 |
|
excom13 |
|- ( E. c E. b E. a ( <. A , B , C >. = <. a , b , c >. /\ ps ) <-> E. a E. b E. c ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
49 |
47 48
|
sylib |
|- ( ph -> E. a E. b E. c ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) |
50 |
|
eqeq1 |
|- ( x = <. A , B , C >. -> ( x = <. a , b , c >. <-> <. A , B , C >. = <. a , b , c >. ) ) |
51 |
50
|
anbi1d |
|- ( x = <. A , B , C >. -> ( ( x = <. a , b , c >. /\ ps ) <-> ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
52 |
51
|
3exbidv |
|- ( x = <. A , B , C >. -> ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> E. a E. b E. c ( <. A , B , C >. = <. a , b , c >. /\ ps ) ) ) |
53 |
49 52
|
syl5ibrcom |
|- ( ph -> ( x = <. A , B , C >. -> E. a E. b E. c ( x = <. a , b , c >. /\ ps ) ) ) |
54 |
16 53
|
impbid |
|- ( ph -> ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) ) |
55 |
54
|
alrimiv |
|- ( ph -> A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) ) |
56 |
|
otex |
|- <. A , B , C >. e. _V |
57 |
|
eqeq2 |
|- ( y = <. A , B , C >. -> ( x = y <-> x = <. A , B , C >. ) ) |
58 |
57
|
bibi2d |
|- ( y = <. A , B , C >. -> ( ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) <-> ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) ) ) |
59 |
58
|
albidv |
|- ( y = <. A , B , C >. -> ( A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) <-> A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) ) ) |
60 |
56 59
|
spcev |
|- ( A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = <. A , B , C >. ) -> E. y A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) ) |
61 |
55 60
|
syl |
|- ( ph -> E. y A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) ) |
62 |
|
eu6 |
|- ( E! x E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> E. y A. x ( E. a E. b E. c ( x = <. a , b , c >. /\ ps ) <-> x = y ) ) |
63 |
61 62
|
sylibr |
|- ( ph -> E! x E. a E. b E. c ( x = <. a , b , c >. /\ ps ) ) |