Metamath Proof Explorer


Theorem eupicka

Description: Version of eupick with closed formulas. (Contributed by NM, 6-Sep-2008)

Ref Expression
Assertion eupicka
|- ( ( E! x ph /\ E. x ( ph /\ ps ) ) -> A. x ( ph -> ps ) )

Proof

Step Hyp Ref Expression
1 nfeu1
 |-  F/ x E! x ph
2 nfe1
 |-  F/ x E. x ( ph /\ ps )
3 1 2 nfan
 |-  F/ x ( E! x ph /\ E. x ( ph /\ ps ) )
4 eupick
 |-  ( ( E! x ph /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) )
5 3 4 alrimi
 |-  ( ( E! x ph /\ E. x ( ph /\ ps ) ) -> A. x ( ph -> ps ) )