| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupick |
|- ( ( E! x ph /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) |
| 2 |
1
|
3adant2 |
|- ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) |
| 3 |
|
exancom |
|- ( E. x ( ph /\ ps ) <-> E. x ( ps /\ ph ) ) |
| 4 |
|
eupick |
|- ( ( E! x ps /\ E. x ( ps /\ ph ) ) -> ( ps -> ph ) ) |
| 5 |
3 4
|
sylan2b |
|- ( ( E! x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) |
| 6 |
5
|
3adant1 |
|- ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) |
| 7 |
2 6
|
impbid |
|- ( ( E! x ph /\ E! x ps /\ E. x ( ph /\ ps ) ) -> ( ph <-> ps ) ) |