Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 11-Jul-2011) (Proof shortened by Wolf Lammen, 27-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | eupickbi | |- ( E! x ph -> ( E. x ( ph /\ ps ) <-> A. x ( ph -> ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupicka | |- ( ( E! x ph /\ E. x ( ph /\ ps ) ) -> A. x ( ph -> ps ) ) |
|
2 | 1 | ex | |- ( E! x ph -> ( E. x ( ph /\ ps ) -> A. x ( ph -> ps ) ) ) |
3 | euex | |- ( E! x ph -> E. x ph ) |
|
4 | exintr | |- ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) ) |
|
5 | 3 4 | syl5com | |- ( E! x ph -> ( A. x ( ph -> ps ) -> E. x ( ph /\ ps ) ) ) |
6 | 2 5 | impbid | |- ( E! x ph -> ( E. x ( ph /\ ps ) <-> A. x ( ph -> ps ) ) ) |