| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eupth0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | eupth0.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | eqidd |  |-  ( A e. V -> { <. 0 , A >. } = { <. 0 , A >. } ) | 
						
							| 4 | 1 | is0wlk |  |-  ( ( { <. 0 , A >. } = { <. 0 , A >. } /\ A e. V ) -> (/) ( Walks ` G ) { <. 0 , A >. } ) | 
						
							| 5 | 3 4 | mpancom |  |-  ( A e. V -> (/) ( Walks ` G ) { <. 0 , A >. } ) | 
						
							| 6 |  | f1o0 |  |-  (/) : (/) -1-1-onto-> (/) | 
						
							| 7 |  | eqidd |  |-  ( I = (/) -> (/) = (/) ) | 
						
							| 8 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 9 | 8 | oveq2i |  |-  ( 0 ..^ ( # ` (/) ) ) = ( 0 ..^ 0 ) | 
						
							| 10 |  | fzo0 |  |-  ( 0 ..^ 0 ) = (/) | 
						
							| 11 | 9 10 | eqtri |  |-  ( 0 ..^ ( # ` (/) ) ) = (/) | 
						
							| 12 | 11 | a1i |  |-  ( I = (/) -> ( 0 ..^ ( # ` (/) ) ) = (/) ) | 
						
							| 13 |  | dmeq |  |-  ( I = (/) -> dom I = dom (/) ) | 
						
							| 14 |  | dm0 |  |-  dom (/) = (/) | 
						
							| 15 | 13 14 | eqtrdi |  |-  ( I = (/) -> dom I = (/) ) | 
						
							| 16 | 7 12 15 | f1oeq123d |  |-  ( I = (/) -> ( (/) : ( 0 ..^ ( # ` (/) ) ) -1-1-onto-> dom I <-> (/) : (/) -1-1-onto-> (/) ) ) | 
						
							| 17 | 6 16 | mpbiri |  |-  ( I = (/) -> (/) : ( 0 ..^ ( # ` (/) ) ) -1-1-onto-> dom I ) | 
						
							| 18 | 5 17 | anim12i |  |-  ( ( A e. V /\ I = (/) ) -> ( (/) ( Walks ` G ) { <. 0 , A >. } /\ (/) : ( 0 ..^ ( # ` (/) ) ) -1-1-onto-> dom I ) ) | 
						
							| 19 | 2 | iseupthf1o |  |-  ( (/) ( EulerPaths ` G ) { <. 0 , A >. } <-> ( (/) ( Walks ` G ) { <. 0 , A >. } /\ (/) : ( 0 ..^ ( # ` (/) ) ) -1-1-onto-> dom I ) ) | 
						
							| 20 | 18 19 | sylibr |  |-  ( ( A e. V /\ I = (/) ) -> (/) ( EulerPaths ` G ) { <. 0 , A >. } ) |