Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2 |
|- ( (/) = if ( A = B , (/) , { A , B } ) -> ( U e. (/) <-> U e. if ( A = B , (/) , { A , B } ) ) ) |
2 |
1
|
bibi1d |
|- ( (/) = if ( A = B , (/) , { A , B } ) -> ( ( U e. (/) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) <-> ( U e. if ( A = B , (/) , { A , B } ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) ) |
3 |
|
eleq2 |
|- ( { A , B } = if ( A = B , (/) , { A , B } ) -> ( U e. { A , B } <-> U e. if ( A = B , (/) , { A , B } ) ) ) |
4 |
3
|
bibi1d |
|- ( { A , B } = if ( A = B , (/) , { A , B } ) -> ( ( U e. { A , B } <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) <-> ( U e. if ( A = B , (/) , { A , B } ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) ) |
5 |
|
noel |
|- -. U e. (/) |
6 |
5
|
a1i |
|- ( ( U e. V /\ A = B ) -> -. U e. (/) ) |
7 |
|
simpl |
|- ( ( A =/= B /\ ( U = A \/ U = B ) ) -> A =/= B ) |
8 |
7
|
neneqd |
|- ( ( A =/= B /\ ( U = A \/ U = B ) ) -> -. A = B ) |
9 |
|
simpr |
|- ( ( U e. V /\ A = B ) -> A = B ) |
10 |
8 9
|
nsyl3 |
|- ( ( U e. V /\ A = B ) -> -. ( A =/= B /\ ( U = A \/ U = B ) ) ) |
11 |
6 10
|
2falsed |
|- ( ( U e. V /\ A = B ) -> ( U e. (/) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |
12 |
|
elprg |
|- ( U e. V -> ( U e. { A , B } <-> ( U = A \/ U = B ) ) ) |
13 |
|
df-ne |
|- ( A =/= B <-> -. A = B ) |
14 |
|
ibar |
|- ( A =/= B -> ( ( U = A \/ U = B ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |
15 |
13 14
|
sylbir |
|- ( -. A = B -> ( ( U = A \/ U = B ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |
16 |
12 15
|
sylan9bb |
|- ( ( U e. V /\ -. A = B ) -> ( U e. { A , B } <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |
17 |
2 4 11 16
|
ifbothda |
|- ( U e. V -> ( U e. if ( A = B , (/) , { A , B } ) <-> ( A =/= B /\ ( U = A \/ U = B ) ) ) ) |