Step |
Hyp |
Ref |
Expression |
1 |
|
eupth2.v |
|- V = ( Vtx ` G ) |
2 |
|
eupth2.i |
|- I = ( iEdg ` G ) |
3 |
|
eupth2.g |
|- ( ph -> G e. UPGraph ) |
4 |
|
eupth2.f |
|- ( ph -> Fun I ) |
5 |
|
eupth2.p |
|- ( ph -> F ( EulerPaths ` G ) P ) |
6 |
|
eupth2.h |
|- H = <. V , ( I |` ( F " ( 0 ..^ N ) ) ) >. |
7 |
|
eupth2.x |
|- X = <. V , ( I |` ( F " ( 0 ..^ ( N + 1 ) ) ) ) >. |
8 |
|
eupth2.n |
|- ( ph -> N e. NN0 ) |
9 |
|
eupth2.l |
|- ( ph -> ( N + 1 ) <_ ( # ` F ) ) |
10 |
|
eupth2.u |
|- ( ph -> U e. V ) |
11 |
|
eupth2.o |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` H ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) |
12 |
|
eupthiswlk |
|- ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P ) |
13 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
14 |
5 12 13
|
3syl |
|- ( ph -> ( # ` F ) e. NN0 ) |
15 |
|
nn0p1elfzo |
|- ( ( N e. NN0 /\ ( # ` F ) e. NN0 /\ ( N + 1 ) <_ ( # ` F ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) |
16 |
8 14 9 15
|
syl3anc |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
17 |
|
eupthistrl |
|- ( F ( EulerPaths ` G ) P -> F ( Trails ` G ) P ) |
18 |
5 17
|
syl |
|- ( ph -> F ( Trails ` G ) P ) |
19 |
6
|
fveq2i |
|- ( Vtx ` H ) = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ N ) ) ) >. ) |
20 |
1
|
fvexi |
|- V e. _V |
21 |
2
|
fvexi |
|- I e. _V |
22 |
21
|
resex |
|- ( I |` ( F " ( 0 ..^ N ) ) ) e. _V |
23 |
20 22
|
opvtxfvi |
|- ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ N ) ) ) >. ) = V |
24 |
19 23
|
eqtri |
|- ( Vtx ` H ) = V |
25 |
24
|
a1i |
|- ( ph -> ( Vtx ` H ) = V ) |
26 |
|
snex |
|- { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } e. _V |
27 |
20 26
|
opvtxfvi |
|- ( Vtx ` <. V , { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } >. ) = V |
28 |
27
|
a1i |
|- ( ph -> ( Vtx ` <. V , { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } >. ) = V ) |
29 |
7
|
fveq2i |
|- ( Vtx ` X ) = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( N + 1 ) ) ) ) >. ) |
30 |
21
|
resex |
|- ( I |` ( F " ( 0 ..^ ( N + 1 ) ) ) ) e. _V |
31 |
20 30
|
opvtxfvi |
|- ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( N + 1 ) ) ) ) >. ) = V |
32 |
29 31
|
eqtri |
|- ( Vtx ` X ) = V |
33 |
32
|
a1i |
|- ( ph -> ( Vtx ` X ) = V ) |
34 |
6
|
fveq2i |
|- ( iEdg ` H ) = ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ N ) ) ) >. ) |
35 |
20 22
|
opiedgfvi |
|- ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ N ) ) ) >. ) = ( I |` ( F " ( 0 ..^ N ) ) ) |
36 |
34 35
|
eqtri |
|- ( iEdg ` H ) = ( I |` ( F " ( 0 ..^ N ) ) ) |
37 |
36
|
a1i |
|- ( ph -> ( iEdg ` H ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
38 |
20 26
|
opiedgfvi |
|- ( iEdg ` <. V , { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } >. ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } |
39 |
38
|
a1i |
|- ( ph -> ( iEdg ` <. V , { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } >. ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
40 |
7
|
fveq2i |
|- ( iEdg ` X ) = ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( N + 1 ) ) ) ) >. ) |
41 |
20 30
|
opiedgfvi |
|- ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( N + 1 ) ) ) ) >. ) = ( I |` ( F " ( 0 ..^ ( N + 1 ) ) ) ) |
42 |
40 41
|
eqtri |
|- ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ ( N + 1 ) ) ) ) |
43 |
8
|
nn0zd |
|- ( ph -> N e. ZZ ) |
44 |
|
fzval3 |
|- ( N e. ZZ -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
45 |
44
|
eqcomd |
|- ( N e. ZZ -> ( 0 ..^ ( N + 1 ) ) = ( 0 ... N ) ) |
46 |
43 45
|
syl |
|- ( ph -> ( 0 ..^ ( N + 1 ) ) = ( 0 ... N ) ) |
47 |
46
|
imaeq2d |
|- ( ph -> ( F " ( 0 ..^ ( N + 1 ) ) ) = ( F " ( 0 ... N ) ) ) |
48 |
47
|
reseq2d |
|- ( ph -> ( I |` ( F " ( 0 ..^ ( N + 1 ) ) ) ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
49 |
42 48
|
syl5eq |
|- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
50 |
|
2fveq3 |
|- ( k = N -> ( I ` ( F ` k ) ) = ( I ` ( F ` N ) ) ) |
51 |
|
fveq2 |
|- ( k = N -> ( P ` k ) = ( P ` N ) ) |
52 |
|
fvoveq1 |
|- ( k = N -> ( P ` ( k + 1 ) ) = ( P ` ( N + 1 ) ) ) |
53 |
51 52
|
preq12d |
|- ( k = N -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
54 |
50 53
|
eqeq12d |
|- ( k = N -> ( ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
55 |
5 12
|
syl |
|- ( ph -> F ( Walks ` G ) P ) |
56 |
2
|
upgrwlkedg |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
57 |
3 55 56
|
syl2anc |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
58 |
54 57 16
|
rspcdva |
|- ( ph -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
59 |
1 2 4 16 10 18 25 28 33 37 39 49 11 58
|
eupth2lem3lem7 |
|- ( ph -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |