Step |
Hyp |
Ref |
Expression |
1 |
|
trlsegvdeg.v |
|- V = ( Vtx ` G ) |
2 |
|
trlsegvdeg.i |
|- I = ( iEdg ` G ) |
3 |
|
trlsegvdeg.f |
|- ( ph -> Fun I ) |
4 |
|
trlsegvdeg.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
5 |
|
trlsegvdeg.u |
|- ( ph -> U e. V ) |
6 |
|
trlsegvdeg.w |
|- ( ph -> F ( Trails ` G ) P ) |
7 |
|
trlsegvdeg.vx |
|- ( ph -> ( Vtx ` X ) = V ) |
8 |
|
trlsegvdeg.vy |
|- ( ph -> ( Vtx ` Y ) = V ) |
9 |
|
trlsegvdeg.vz |
|- ( ph -> ( Vtx ` Z ) = V ) |
10 |
|
trlsegvdeg.ix |
|- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
11 |
|
trlsegvdeg.iy |
|- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
12 |
|
trlsegvdeg.iz |
|- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
13 |
|
eupth2lem3.o |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) |
14 |
|
eupth2lem3lem3.e |
|- ( ph -> if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
15 |
|
fveq2 |
|- ( x = U -> ( ( VtxDeg ` X ) ` x ) = ( ( VtxDeg ` X ) ` U ) ) |
16 |
15
|
breq2d |
|- ( x = U -> ( 2 || ( ( VtxDeg ` X ) ` x ) <-> 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
17 |
16
|
notbid |
|- ( x = U -> ( -. 2 || ( ( VtxDeg ` X ) ` x ) <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
18 |
17
|
elrab3 |
|- ( U e. V -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
19 |
5 18
|
syl |
|- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
20 |
13
|
eleq2d |
|- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
21 |
19 20
|
bitr3d |
|- ( ph -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
23 |
|
2z |
|- 2 e. ZZ |
24 |
23
|
a1i |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> 2 e. ZZ ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem1 |
|- ( ph -> ( ( VtxDeg ` X ) ` U ) e. NN0 ) |
26 |
25
|
nn0zd |
|- ( ph -> ( ( VtxDeg ` X ) ` U ) e. ZZ ) |
27 |
26
|
adantr |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( ( VtxDeg ` X ) ` U ) e. ZZ ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem2 |
|- ( ph -> ( ( VtxDeg ` Y ) ` U ) e. NN0 ) |
29 |
28
|
nn0zd |
|- ( ph -> ( ( VtxDeg ` Y ) ` U ) e. ZZ ) |
30 |
29
|
adantr |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( ( VtxDeg ` Y ) ` U ) e. ZZ ) |
31 |
|
z2even |
|- 2 || 2 |
32 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> ( Vtx ` Y ) = V ) |
33 |
|
fvexd |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> ( F ` N ) e. _V ) |
34 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> U e. V ) |
35 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
36 |
14
|
adantr |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
37 |
|
ifptru |
|- ( ( P ` N ) = ( P ` ( N + 1 ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) <-> ( I ` ( F ` N ) ) = { ( P ` N ) } ) ) |
38 |
37
|
adantl |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) <-> ( I ` ( F ` N ) ) = { ( P ` N ) } ) ) |
39 |
36 38
|
mpbid |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) } ) |
40 |
|
sneq |
|- ( ( P ` N ) = U -> { ( P ` N ) } = { U } ) |
41 |
40
|
eqcoms |
|- ( U = ( P ` N ) -> { ( P ` N ) } = { U } ) |
42 |
39 41
|
sylan9eq |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> ( I ` ( F ` N ) ) = { U } ) |
43 |
42
|
opeq2d |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> <. ( F ` N ) , ( I ` ( F ` N ) ) >. = <. ( F ` N ) , { U } >. ) |
44 |
43
|
sneqd |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } = { <. ( F ` N ) , { U } >. } ) |
45 |
35 44
|
eqtrd |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> ( iEdg ` Y ) = { <. ( F ` N ) , { U } >. } ) |
46 |
32 33 34 45
|
1loopgrvd2 |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> ( ( VtxDeg ` Y ) ` U ) = 2 ) |
47 |
31 46
|
breqtrrid |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U = ( P ` N ) ) -> 2 || ( ( VtxDeg ` Y ) ` U ) ) |
48 |
|
z0even |
|- 2 || 0 |
49 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U =/= ( P ` N ) ) -> ( Vtx ` Y ) = V ) |
50 |
|
fvexd |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U =/= ( P ` N ) ) -> ( F ` N ) e. _V ) |
51 |
1 2 3 4 5 6
|
trlsegvdeglem1 |
|- ( ph -> ( ( P ` N ) e. V /\ ( P ` ( N + 1 ) ) e. V ) ) |
52 |
51
|
simpld |
|- ( ph -> ( P ` N ) e. V ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U =/= ( P ` N ) ) -> ( P ` N ) e. V ) |
54 |
11
|
adantr |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
55 |
39
|
opeq2d |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> <. ( F ` N ) , ( I ` ( F ` N ) ) >. = <. ( F ` N ) , { ( P ` N ) } >. ) |
56 |
55
|
sneqd |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } = { <. ( F ` N ) , { ( P ` N ) } >. } ) |
57 |
54 56
|
eqtrd |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( iEdg ` Y ) = { <. ( F ` N ) , { ( P ` N ) } >. } ) |
58 |
57
|
adantr |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U =/= ( P ` N ) ) -> ( iEdg ` Y ) = { <. ( F ` N ) , { ( P ` N ) } >. } ) |
59 |
5
|
adantr |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> U e. V ) |
60 |
59
|
anim1i |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U =/= ( P ` N ) ) -> ( U e. V /\ U =/= ( P ` N ) ) ) |
61 |
|
eldifsn |
|- ( U e. ( V \ { ( P ` N ) } ) <-> ( U e. V /\ U =/= ( P ` N ) ) ) |
62 |
60 61
|
sylibr |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U =/= ( P ` N ) ) -> U e. ( V \ { ( P ` N ) } ) ) |
63 |
49 50 53 58 62
|
1loopgrvd0 |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U =/= ( P ` N ) ) -> ( ( VtxDeg ` Y ) ` U ) = 0 ) |
64 |
48 63
|
breqtrrid |
|- ( ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) /\ U =/= ( P ` N ) ) -> 2 || ( ( VtxDeg ` Y ) ` U ) ) |
65 |
47 64
|
pm2.61dane |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> 2 || ( ( VtxDeg ` Y ) ` U ) ) |
66 |
|
dvdsadd2b |
|- ( ( 2 e. ZZ /\ ( ( VtxDeg ` X ) ` U ) e. ZZ /\ ( ( ( VtxDeg ` Y ) ` U ) e. ZZ /\ 2 || ( ( VtxDeg ` Y ) ` U ) ) ) -> ( 2 || ( ( VtxDeg ` X ) ` U ) <-> 2 || ( ( ( VtxDeg ` Y ) ` U ) + ( ( VtxDeg ` X ) ` U ) ) ) ) |
67 |
24 27 30 65 66
|
syl112anc |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( 2 || ( ( VtxDeg ` X ) ` U ) <-> 2 || ( ( ( VtxDeg ` Y ) ` U ) + ( ( VtxDeg ` X ) ` U ) ) ) ) |
68 |
28
|
nn0cnd |
|- ( ph -> ( ( VtxDeg ` Y ) ` U ) e. CC ) |
69 |
25
|
nn0cnd |
|- ( ph -> ( ( VtxDeg ` X ) ` U ) e. CC ) |
70 |
68 69
|
addcomd |
|- ( ph -> ( ( ( VtxDeg ` Y ) ` U ) + ( ( VtxDeg ` X ) ` U ) ) = ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) |
71 |
70
|
breq2d |
|- ( ph -> ( 2 || ( ( ( VtxDeg ` Y ) ` U ) + ( ( VtxDeg ` X ) ` U ) ) <-> 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( 2 || ( ( ( VtxDeg ` Y ) ` U ) + ( ( VtxDeg ` X ) ` U ) ) <-> 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) ) |
73 |
67 72
|
bitrd |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( 2 || ( ( VtxDeg ` X ) ` U ) <-> 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) ) |
74 |
73
|
notbid |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) <-> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) ) |
75 |
|
simpr |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( P ` N ) = ( P ` ( N + 1 ) ) ) |
76 |
75
|
eqeq2d |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( ( P ` 0 ) = ( P ` N ) <-> ( P ` 0 ) = ( P ` ( N + 1 ) ) ) ) |
77 |
75
|
preq2d |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> { ( P ` 0 ) , ( P ` N ) } = { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) |
78 |
76 77
|
ifbieq2d |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) = if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) |
79 |
78
|
eleq2d |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
80 |
22 74 79
|
3bitr3d |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |