Step |
Hyp |
Ref |
Expression |
1 |
|
trlsegvdeg.v |
|- V = ( Vtx ` G ) |
2 |
|
trlsegvdeg.i |
|- I = ( iEdg ` G ) |
3 |
|
trlsegvdeg.f |
|- ( ph -> Fun I ) |
4 |
|
trlsegvdeg.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
5 |
|
trlsegvdeg.u |
|- ( ph -> U e. V ) |
6 |
|
trlsegvdeg.w |
|- ( ph -> F ( Trails ` G ) P ) |
7 |
|
trlsegvdeg.vx |
|- ( ph -> ( Vtx ` X ) = V ) |
8 |
|
trlsegvdeg.vy |
|- ( ph -> ( Vtx ` Y ) = V ) |
9 |
|
trlsegvdeg.vz |
|- ( ph -> ( Vtx ` Z ) = V ) |
10 |
|
trlsegvdeg.ix |
|- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
11 |
|
trlsegvdeg.iy |
|- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
12 |
|
trlsegvdeg.iz |
|- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
13 |
|
eupth2lem3.o |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) |
14 |
|
eupth2lem3.e |
|- ( ph -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
15 |
11
|
3ad2ant1 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
16 |
8
|
3ad2ant1 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( Vtx ` Y ) = V ) |
17 |
|
fvexd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( F ` N ) e. _V ) |
18 |
5
|
3ad2ant1 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U e. V ) |
19 |
|
fvexd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( I ` ( F ` N ) ) e. _V ) |
20 |
|
simpl |
|- ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) -> U =/= ( P ` N ) ) |
21 |
20
|
adantl |
|- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U =/= ( P ` N ) ) |
22 |
|
simpr |
|- ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) -> U =/= ( P ` ( N + 1 ) ) ) |
23 |
22
|
adantl |
|- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U =/= ( P ` ( N + 1 ) ) ) |
24 |
21 23
|
nelprd |
|- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> -. U e. { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
25 |
|
df-nel |
|- ( U e/ { ( P ` N ) , ( P ` ( N + 1 ) ) } <-> -. U e. { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
26 |
24 25
|
sylibr |
|- ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U e/ { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
27 |
|
neleq2 |
|- ( ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } -> ( U e/ ( I ` ( F ` N ) ) <-> U e/ { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
28 |
26 27
|
syl5ibr |
|- ( ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } -> ( ( ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U e/ ( I ` ( F ` N ) ) ) ) |
29 |
28
|
expd |
|- ( ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } -> ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) -> U e/ ( I ` ( F ` N ) ) ) ) ) |
30 |
14 29
|
syl |
|- ( ph -> ( ( P ` N ) =/= ( P ` ( N + 1 ) ) -> ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) -> U e/ ( I ` ( F ` N ) ) ) ) ) |
31 |
30
|
3imp |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U e/ ( I ` ( F ` N ) ) ) |
32 |
15 16 17 18 19 31
|
1hevtxdg0 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( VtxDeg ` Y ) ` U ) = 0 ) |
33 |
32
|
oveq2d |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) = ( ( ( VtxDeg ` X ) ` U ) + 0 ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 12
|
eupth2lem3lem1 |
|- ( ph -> ( ( VtxDeg ` X ) ` U ) e. NN0 ) |
35 |
34
|
nn0cnd |
|- ( ph -> ( ( VtxDeg ` X ) ` U ) e. CC ) |
36 |
35
|
addid1d |
|- ( ph -> ( ( ( VtxDeg ` X ) ` U ) + 0 ) = ( ( VtxDeg ` X ) ` U ) ) |
37 |
36
|
3ad2ant1 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( VtxDeg ` X ) ` U ) + 0 ) = ( ( VtxDeg ` X ) ` U ) ) |
38 |
33 37
|
eqtrd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) = ( ( VtxDeg ` X ) ` U ) ) |
39 |
38
|
breq2d |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
40 |
39
|
notbid |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
41 |
|
fveq2 |
|- ( x = U -> ( ( VtxDeg ` X ) ` x ) = ( ( VtxDeg ` X ) ` U ) ) |
42 |
41
|
breq2d |
|- ( x = U -> ( 2 || ( ( VtxDeg ` X ) ` x ) <-> 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
43 |
42
|
notbid |
|- ( x = U -> ( -. 2 || ( ( VtxDeg ` X ) ` x ) <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
44 |
43
|
elrab3 |
|- ( U e. V -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
45 |
5 44
|
syl |
|- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> -. 2 || ( ( VtxDeg ` X ) ` U ) ) ) |
46 |
13
|
eleq2d |
|- ( ph -> ( U e. { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
47 |
45 46
|
bitr3d |
|- ( ph -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
48 |
47
|
3ad2ant1 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( VtxDeg ` X ) ` U ) <-> U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) ) |
49 |
20
|
3ad2ant3 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U =/= ( P ` N ) ) |
50 |
22
|
3ad2ant3 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> U =/= ( P ` ( N + 1 ) ) ) |
51 |
49 50
|
2thd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U =/= ( P ` N ) <-> U =/= ( P ` ( N + 1 ) ) ) ) |
52 |
|
neeq1 |
|- ( U = ( P ` 0 ) -> ( U =/= ( P ` N ) <-> ( P ` 0 ) =/= ( P ` N ) ) ) |
53 |
|
neeq1 |
|- ( U = ( P ` 0 ) -> ( U =/= ( P ` ( N + 1 ) ) <-> ( P ` 0 ) =/= ( P ` ( N + 1 ) ) ) ) |
54 |
52 53
|
bibi12d |
|- ( U = ( P ` 0 ) -> ( ( U =/= ( P ` N ) <-> U =/= ( P ` ( N + 1 ) ) ) <-> ( ( P ` 0 ) =/= ( P ` N ) <-> ( P ` 0 ) =/= ( P ` ( N + 1 ) ) ) ) ) |
55 |
51 54
|
syl5ibcom |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) -> ( ( P ` 0 ) =/= ( P ` N ) <-> ( P ` 0 ) =/= ( P ` ( N + 1 ) ) ) ) ) |
56 |
55
|
pm5.32rd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` N ) /\ U = ( P ` 0 ) ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ U = ( P ` 0 ) ) ) ) |
57 |
49
|
neneqd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> -. U = ( P ` N ) ) |
58 |
|
biorf |
|- ( -. U = ( P ` N ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` N ) \/ U = ( P ` 0 ) ) ) ) |
59 |
57 58
|
syl |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` N ) \/ U = ( P ` 0 ) ) ) ) |
60 |
|
orcom |
|- ( ( U = ( P ` N ) \/ U = ( P ` 0 ) ) <-> ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) |
61 |
59 60
|
bitrdi |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) ) |
62 |
61
|
anbi2d |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` N ) /\ U = ( P ` 0 ) ) <-> ( ( P ` 0 ) =/= ( P ` N ) /\ ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) ) ) |
63 |
50
|
neneqd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> -. U = ( P ` ( N + 1 ) ) ) |
64 |
|
biorf |
|- ( -. U = ( P ` ( N + 1 ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` ( N + 1 ) ) \/ U = ( P ` 0 ) ) ) ) |
65 |
63 64
|
syl |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` ( N + 1 ) ) \/ U = ( P ` 0 ) ) ) ) |
66 |
|
orcom |
|- ( ( U = ( P ` ( N + 1 ) ) \/ U = ( P ` 0 ) ) <-> ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) |
67 |
65 66
|
bitrdi |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U = ( P ` 0 ) <-> ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) |
68 |
67
|
anbi2d |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ U = ( P ` 0 ) ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) ) |
69 |
56 62 68
|
3bitr3d |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` N ) /\ ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) ) |
70 |
|
eupth2lem1 |
|- ( U e. V -> ( U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> ( ( P ` 0 ) =/= ( P ` N ) /\ ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) ) ) |
71 |
18 70
|
syl |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> ( ( P ` 0 ) =/= ( P ` N ) /\ ( U = ( P ` 0 ) \/ U = ( P ` N ) ) ) ) ) |
72 |
|
eupth2lem1 |
|- ( U e. V -> ( U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) ) |
73 |
18 72
|
syl |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) <-> ( ( P ` 0 ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` 0 ) \/ U = ( P ` ( N + 1 ) ) ) ) ) ) |
74 |
69 71 73
|
3bitr4d |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( U e. if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
75 |
40 48 74
|
3bitrd |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |