Step |
Hyp |
Ref |
Expression |
1 |
|
trlsegvdeg.v |
|- V = ( Vtx ` G ) |
2 |
|
trlsegvdeg.i |
|- I = ( iEdg ` G ) |
3 |
|
trlsegvdeg.f |
|- ( ph -> Fun I ) |
4 |
|
trlsegvdeg.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
5 |
|
trlsegvdeg.u |
|- ( ph -> U e. V ) |
6 |
|
trlsegvdeg.w |
|- ( ph -> F ( Trails ` G ) P ) |
7 |
|
trlsegvdeg.vx |
|- ( ph -> ( Vtx ` X ) = V ) |
8 |
|
trlsegvdeg.vy |
|- ( ph -> ( Vtx ` Y ) = V ) |
9 |
|
trlsegvdeg.vz |
|- ( ph -> ( Vtx ` Z ) = V ) |
10 |
|
trlsegvdeg.ix |
|- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
11 |
|
trlsegvdeg.iy |
|- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
12 |
|
trlsegvdeg.iz |
|- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
13 |
|
eupth2lem3.o |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` X ) ` x ) } = if ( ( P ` 0 ) = ( P ` N ) , (/) , { ( P ` 0 ) , ( P ` N ) } ) ) |
14 |
|
eupth2lem3.e |
|- ( ph -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeg |
|- ( ph -> ( ( VtxDeg ` Z ) ` U ) = ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) |
16 |
15
|
breq2d |
|- ( ph -> ( 2 || ( ( VtxDeg ` Z ) ` U ) <-> 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) ) |
17 |
16
|
notbid |
|- ( ph -> ( -. 2 || ( ( VtxDeg ` Z ) ` U ) <-> -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) ) |
18 |
|
ifpprsnss |
|- ( ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } -> if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
19 |
14 18
|
syl |
|- ( ph -> if- ( ( P ` N ) = ( P ` ( N + 1 ) ) , ( I ` ( F ` N ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` ( N + 1 ) ) } C_ ( I ` ( F ` N ) ) ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 19
|
eupth2lem3lem3 |
|- ( ( ph /\ ( P ` N ) = ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
eupth2lem3lem5 |
|- ( ph -> ( I ` ( F ` N ) ) e. ~P V ) |
22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 19 21
|
eupth2lem3lem4 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
23 |
22
|
3expa |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
24 |
23
|
expcom |
|- ( ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
25 |
|
neanior |
|- ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) <-> -. ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
eupth2lem3lem6 |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
27 |
26
|
3expa |
|- ( ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) /\ ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
28 |
27
|
expcom |
|- ( ( U =/= ( P ` N ) /\ U =/= ( P ` ( N + 1 ) ) ) -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
29 |
25 28
|
sylbir |
|- ( -. ( U = ( P ` N ) \/ U = ( P ` ( N + 1 ) ) ) -> ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) ) |
30 |
24 29
|
pm2.61i |
|- ( ( ph /\ ( P ` N ) =/= ( P ` ( N + 1 ) ) ) -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
31 |
20 30
|
pm2.61dane |
|- ( ph -> ( -. 2 || ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |
32 |
17 31
|
bitrd |
|- ( ph -> ( -. 2 || ( ( VtxDeg ` Z ) ` U ) <-> U e. if ( ( P ` 0 ) = ( P ` ( N + 1 ) ) , (/) , { ( P ` 0 ) , ( P ` ( N + 1 ) ) } ) ) ) |