Step |
Hyp |
Ref |
Expression |
1 |
|
eupth2.v |
|- V = ( Vtx ` G ) |
2 |
|
eupth2.i |
|- I = ( iEdg ` G ) |
3 |
|
eupth2.g |
|- ( ph -> G e. UPGraph ) |
4 |
|
eupth2.f |
|- ( ph -> Fun I ) |
5 |
|
eupth2.p |
|- ( ph -> F ( EulerPaths ` G ) P ) |
6 |
|
z0even |
|- 2 || 0 |
7 |
1
|
fvexi |
|- V e. _V |
8 |
2
|
fvexi |
|- I e. _V |
9 |
8
|
resex |
|- ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V |
10 |
7 9
|
pm3.2i |
|- ( V e. _V /\ ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V ) |
11 |
|
opvtxfv |
|- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V ) -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = V ) |
12 |
10 11
|
mp1i |
|- ( ph -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = V ) |
13 |
12
|
eqcomd |
|- ( ph -> V = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) |
14 |
13
|
eleq2d |
|- ( ph -> ( x e. V <-> x e. ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) ) |
15 |
14
|
biimpa |
|- ( ( ph /\ x e. V ) -> x e. ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ) |
16 |
|
opiedgfv |
|- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ 0 ) ) ) e. _V ) -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( I |` ( F " ( 0 ..^ 0 ) ) ) ) |
17 |
10 16
|
mp1i |
|- ( ph -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( I |` ( F " ( 0 ..^ 0 ) ) ) ) |
18 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
19 |
18
|
imaeq2i |
|- ( F " ( 0 ..^ 0 ) ) = ( F " (/) ) |
20 |
|
ima0 |
|- ( F " (/) ) = (/) |
21 |
19 20
|
eqtri |
|- ( F " ( 0 ..^ 0 ) ) = (/) |
22 |
21
|
reseq2i |
|- ( I |` ( F " ( 0 ..^ 0 ) ) ) = ( I |` (/) ) |
23 |
|
res0 |
|- ( I |` (/) ) = (/) |
24 |
22 23
|
eqtri |
|- ( I |` ( F " ( 0 ..^ 0 ) ) ) = (/) |
25 |
17 24
|
eqtrdi |
|- ( ph -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = (/) ) |
26 |
25
|
adantr |
|- ( ( ph /\ x e. V ) -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = (/) ) |
27 |
|
eqid |
|- ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) |
28 |
|
eqid |
|- ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) |
29 |
27 28
|
vtxdg0e |
|- ( ( x e. ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) /\ ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) = (/) ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) = 0 ) |
30 |
15 26 29
|
syl2anc |
|- ( ( ph /\ x e. V ) -> ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) = 0 ) |
31 |
6 30
|
breqtrrid |
|- ( ( ph /\ x e. V ) -> 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
32 |
31
|
notnotd |
|- ( ( ph /\ x e. V ) -> -. -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
33 |
32
|
ralrimiva |
|- ( ph -> A. x e. V -. -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
34 |
|
rabeq0 |
|- ( { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = (/) <-> A. x e. V -. -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) ) |
35 |
33 34
|
sylibr |
|- ( ph -> { x e. V | -. 2 || ( ( VtxDeg ` <. V , ( I |` ( F " ( 0 ..^ 0 ) ) ) >. ) ` x ) } = (/) ) |