Step |
Hyp |
Ref |
Expression |
1 |
|
eupths.i |
|- I = ( iEdg ` G ) |
2 |
|
fzofi |
|- ( 0 ..^ ( # ` F ) ) e. Fin |
3 |
1
|
eupthf1o |
|- ( F ( EulerPaths ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) |
4 |
|
ovex |
|- ( 0 ..^ ( # ` F ) ) e. _V |
5 |
4
|
f1oen |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I -> ( 0 ..^ ( # ` F ) ) ~~ dom I ) |
6 |
|
ensym |
|- ( ( 0 ..^ ( # ` F ) ) ~~ dom I -> dom I ~~ ( 0 ..^ ( # ` F ) ) ) |
7 |
3 5 6
|
3syl |
|- ( F ( EulerPaths ` G ) P -> dom I ~~ ( 0 ..^ ( # ` F ) ) ) |
8 |
|
enfii |
|- ( ( ( 0 ..^ ( # ` F ) ) e. Fin /\ dom I ~~ ( 0 ..^ ( # ` F ) ) ) -> dom I e. Fin ) |
9 |
2 7 8
|
sylancr |
|- ( F ( EulerPaths ` G ) P -> dom I e. Fin ) |