Metamath Proof Explorer


Theorem eupthi

Description: Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypothesis eupths.i
|- I = ( iEdg ` G )
Assertion eupthi
|- ( F ( EulerPaths ` G ) P -> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) )

Proof

Step Hyp Ref Expression
1 eupths.i
 |-  I = ( iEdg ` G )
2 1 iseupthf1o
 |-  ( F ( EulerPaths ` G ) P <-> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) )
3 2 biimpi
 |-  ( F ( EulerPaths ` G ) P -> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) )