Description: Properties of an Eulerian path. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021) (Proof shortened by AV, 30-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eupths.i | |- I = ( iEdg ` G ) |
|
Assertion | eupthi | |- ( F ( EulerPaths ` G ) P -> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupths.i | |- I = ( iEdg ` G ) |
|
2 | 1 | iseupthf1o | |- ( F ( EulerPaths ` G ) P <-> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) ) |
3 | 2 | biimpi | |- ( F ( EulerPaths ` G ) P -> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) ) |