Description: An Eulerian path is a trail. (Contributed by Alexander van der Vekens, 24-Nov-2017) (Revised by AV, 18-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eupthistrl | |- ( F ( EulerPaths ` G ) P -> F ( Trails ` G ) P ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
2 | 1 | iseupth | |- ( F ( EulerPaths ` G ) P <-> ( F ( Trails ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -onto-> dom ( iEdg ` G ) ) ) |
3 | 2 | simplbi | |- ( F ( EulerPaths ` G ) P -> F ( Trails ` G ) P ) |