| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eupthp1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | eupthp1.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | eupthp1.f |  |-  ( ph -> Fun I ) | 
						
							| 4 |  | eupthp1.a |  |-  ( ph -> I e. Fin ) | 
						
							| 5 |  | eupthp1.b |  |-  ( ph -> B e. W ) | 
						
							| 6 |  | eupthp1.c |  |-  ( ph -> C e. V ) | 
						
							| 7 |  | eupthp1.d |  |-  ( ph -> -. B e. dom I ) | 
						
							| 8 |  | eupthp1.p |  |-  ( ph -> F ( EulerPaths ` G ) P ) | 
						
							| 9 |  | eupthp1.n |  |-  N = ( # ` F ) | 
						
							| 10 |  | eupthp1.e |  |-  ( ph -> E e. ( Edg ` G ) ) | 
						
							| 11 |  | eupthp1.x |  |-  ( ph -> { ( P ` N ) , C } C_ E ) | 
						
							| 12 |  | eupthp1.u |  |-  ( iEdg ` S ) = ( I u. { <. B , E >. } ) | 
						
							| 13 |  | eupthp1.h |  |-  H = ( F u. { <. N , B >. } ) | 
						
							| 14 |  | eupthp1.q |  |-  Q = ( P u. { <. ( N + 1 ) , C >. } ) | 
						
							| 15 |  | eupthp1.s |  |-  ( Vtx ` S ) = V | 
						
							| 16 |  | eupthp1.l |  |-  ( ( ph /\ C = ( P ` N ) ) -> E = { C } ) | 
						
							| 17 |  | eupthiswlk |  |-  ( F ( EulerPaths ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 18 | 8 17 | syl |  |-  ( ph -> F ( Walks ` G ) P ) | 
						
							| 19 | 12 | a1i |  |-  ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) | 
						
							| 20 | 15 | a1i |  |-  ( ph -> ( Vtx ` S ) = V ) | 
						
							| 21 | 1 2 3 4 5 6 7 18 9 10 11 19 13 14 20 16 | wlkp1 |  |-  ( ph -> H ( Walks ` S ) Q ) | 
						
							| 22 | 2 | eupthi |  |-  ( F ( EulerPaths ` G ) P -> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) ) | 
						
							| 23 | 9 | eqcomi |  |-  ( # ` F ) = N | 
						
							| 24 | 23 | oveq2i |  |-  ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) | 
						
							| 25 |  | f1oeq2 |  |-  ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I <-> F : ( 0 ..^ N ) -1-1-onto-> dom I ) ) | 
						
							| 26 | 24 25 | ax-mp |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I <-> F : ( 0 ..^ N ) -1-1-onto-> dom I ) | 
						
							| 27 | 26 | biimpi |  |-  ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I -> F : ( 0 ..^ N ) -1-1-onto-> dom I ) | 
						
							| 28 | 27 | adantl |  |-  ( ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) -> F : ( 0 ..^ N ) -1-1-onto-> dom I ) | 
						
							| 29 | 8 22 28 | 3syl |  |-  ( ph -> F : ( 0 ..^ N ) -1-1-onto-> dom I ) | 
						
							| 30 | 9 | fvexi |  |-  N e. _V | 
						
							| 31 |  | f1osng |  |-  ( ( N e. _V /\ B e. W ) -> { <. N , B >. } : { N } -1-1-onto-> { B } ) | 
						
							| 32 | 30 5 31 | sylancr |  |-  ( ph -> { <. N , B >. } : { N } -1-1-onto-> { B } ) | 
						
							| 33 |  | dmsnopg |  |-  ( E e. ( Edg ` G ) -> dom { <. B , E >. } = { B } ) | 
						
							| 34 | 10 33 | syl |  |-  ( ph -> dom { <. B , E >. } = { B } ) | 
						
							| 35 | 34 | f1oeq3d |  |-  ( ph -> ( { <. N , B >. } : { N } -1-1-onto-> dom { <. B , E >. } <-> { <. N , B >. } : { N } -1-1-onto-> { B } ) ) | 
						
							| 36 | 32 35 | mpbird |  |-  ( ph -> { <. N , B >. } : { N } -1-1-onto-> dom { <. B , E >. } ) | 
						
							| 37 |  | fzodisjsn |  |-  ( ( 0 ..^ N ) i^i { N } ) = (/) | 
						
							| 38 | 37 | a1i |  |-  ( ph -> ( ( 0 ..^ N ) i^i { N } ) = (/) ) | 
						
							| 39 | 34 | ineq2d |  |-  ( ph -> ( dom I i^i dom { <. B , E >. } ) = ( dom I i^i { B } ) ) | 
						
							| 40 |  | disjsn |  |-  ( ( dom I i^i { B } ) = (/) <-> -. B e. dom I ) | 
						
							| 41 | 7 40 | sylibr |  |-  ( ph -> ( dom I i^i { B } ) = (/) ) | 
						
							| 42 | 39 41 | eqtrd |  |-  ( ph -> ( dom I i^i dom { <. B , E >. } ) = (/) ) | 
						
							| 43 |  | f1oun |  |-  ( ( ( F : ( 0 ..^ N ) -1-1-onto-> dom I /\ { <. N , B >. } : { N } -1-1-onto-> dom { <. B , E >. } ) /\ ( ( ( 0 ..^ N ) i^i { N } ) = (/) /\ ( dom I i^i dom { <. B , E >. } ) = (/) ) ) -> ( F u. { <. N , B >. } ) : ( ( 0 ..^ N ) u. { N } ) -1-1-onto-> ( dom I u. dom { <. B , E >. } ) ) | 
						
							| 44 | 29 36 38 42 43 | syl22anc |  |-  ( ph -> ( F u. { <. N , B >. } ) : ( ( 0 ..^ N ) u. { N } ) -1-1-onto-> ( dom I u. dom { <. B , E >. } ) ) | 
						
							| 45 | 13 | a1i |  |-  ( ph -> H = ( F u. { <. N , B >. } ) ) | 
						
							| 46 | 1 2 3 4 5 6 7 18 9 10 11 19 13 | wlkp1lem2 |  |-  ( ph -> ( # ` H ) = ( N + 1 ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` H ) ) = ( 0 ..^ ( N + 1 ) ) ) | 
						
							| 48 |  | wlkcl |  |-  ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) | 
						
							| 49 | 9 | eleq1i |  |-  ( N e. NN0 <-> ( # ` F ) e. NN0 ) | 
						
							| 50 |  | elnn0uz |  |-  ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) | 
						
							| 51 | 49 50 | sylbb1 |  |-  ( ( # ` F ) e. NN0 -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 52 | 48 51 | syl |  |-  ( F ( Walks ` G ) P -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 53 | 8 17 52 | 3syl |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 54 |  | fzosplitsn |  |-  ( N e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( N + 1 ) ) = ( ( 0 ..^ N ) u. { N } ) ) | 
						
							| 55 | 53 54 | syl |  |-  ( ph -> ( 0 ..^ ( N + 1 ) ) = ( ( 0 ..^ N ) u. { N } ) ) | 
						
							| 56 | 47 55 | eqtrd |  |-  ( ph -> ( 0 ..^ ( # ` H ) ) = ( ( 0 ..^ N ) u. { N } ) ) | 
						
							| 57 |  | dmun |  |-  dom ( I u. { <. B , E >. } ) = ( dom I u. dom { <. B , E >. } ) | 
						
							| 58 | 57 | a1i |  |-  ( ph -> dom ( I u. { <. B , E >. } ) = ( dom I u. dom { <. B , E >. } ) ) | 
						
							| 59 | 45 56 58 | f1oeq123d |  |-  ( ph -> ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I u. { <. B , E >. } ) <-> ( F u. { <. N , B >. } ) : ( ( 0 ..^ N ) u. { N } ) -1-1-onto-> ( dom I u. dom { <. B , E >. } ) ) ) | 
						
							| 60 | 44 59 | mpbird |  |-  ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I u. { <. B , E >. } ) ) | 
						
							| 61 | 12 | eqcomi |  |-  ( I u. { <. B , E >. } ) = ( iEdg ` S ) | 
						
							| 62 | 61 | iseupthf1o |  |-  ( H ( EulerPaths ` S ) Q <-> ( H ( Walks ` S ) Q /\ H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I u. { <. B , E >. } ) ) ) | 
						
							| 63 | 21 60 62 | sylanbrc |  |-  ( ph -> H ( EulerPaths ` S ) Q ) |