| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eupth0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | eupth0.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | eupthres.d |  |-  ( ph -> F ( EulerPaths ` G ) P ) | 
						
							| 4 |  | eupthres.n |  |-  ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 5 |  | eupthres.e |  |-  ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) | 
						
							| 6 |  | eupthres.h |  |-  H = ( F prefix N ) | 
						
							| 7 |  | eupthres.q |  |-  Q = ( P |` ( 0 ... N ) ) | 
						
							| 8 |  | eupthres.s |  |-  ( Vtx ` S ) = V | 
						
							| 9 |  | eupthistrl |  |-  ( F ( EulerPaths ` G ) P -> F ( Trails ` G ) P ) | 
						
							| 10 |  | trliswlk |  |-  ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 11 | 3 9 10 | 3syl |  |-  ( ph -> F ( Walks ` G ) P ) | 
						
							| 12 | 8 | a1i |  |-  ( ph -> ( Vtx ` S ) = V ) | 
						
							| 13 | 1 2 11 4 12 5 6 7 | wlkres |  |-  ( ph -> H ( Walks ` S ) Q ) | 
						
							| 14 | 3 9 | syl |  |-  ( ph -> F ( Trails ` G ) P ) | 
						
							| 15 | 1 2 14 4 6 | trlreslem |  |-  ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) | 
						
							| 16 |  | eqid |  |-  ( iEdg ` S ) = ( iEdg ` S ) | 
						
							| 17 | 16 | iseupthf1o |  |-  ( H ( EulerPaths ` S ) Q <-> ( H ( Walks ` S ) Q /\ H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( iEdg ` S ) ) ) | 
						
							| 18 | 5 | dmeqd |  |-  ( ph -> dom ( iEdg ` S ) = dom ( I |` ( F " ( 0 ..^ N ) ) ) ) | 
						
							| 19 | 18 | f1oeq3d |  |-  ( ph -> ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( iEdg ` S ) <-> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) ) | 
						
							| 20 | 19 | anbi2d |  |-  ( ph -> ( ( H ( Walks ` S ) Q /\ H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( iEdg ` S ) ) <-> ( H ( Walks ` S ) Q /\ H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) ) ) | 
						
							| 21 | 17 20 | bitrid |  |-  ( ph -> ( H ( EulerPaths ` S ) Q <-> ( H ( Walks ` S ) Q /\ H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) ) ) | 
						
							| 22 | 13 15 21 | mpbir2and |  |-  ( ph -> H ( EulerPaths ` S ) Q ) |