Step |
Hyp |
Ref |
Expression |
1 |
|
eupth0.v |
|- V = ( Vtx ` G ) |
2 |
|
eupth0.i |
|- I = ( iEdg ` G ) |
3 |
|
eupthres.d |
|- ( ph -> F ( EulerPaths ` G ) P ) |
4 |
|
eupthres.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
5 |
|
eupthres.e |
|- ( ph -> ( iEdg ` S ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
6 |
|
eupthres.h |
|- H = ( F prefix N ) |
7 |
|
eupthres.q |
|- Q = ( P |` ( 0 ... N ) ) |
8 |
|
eupthres.s |
|- ( Vtx ` S ) = V |
9 |
|
eupthistrl |
|- ( F ( EulerPaths ` G ) P -> F ( Trails ` G ) P ) |
10 |
|
trliswlk |
|- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
11 |
3 9 10
|
3syl |
|- ( ph -> F ( Walks ` G ) P ) |
12 |
8
|
a1i |
|- ( ph -> ( Vtx ` S ) = V ) |
13 |
1 2 11 4 12 5 6 7
|
wlkres |
|- ( ph -> H ( Walks ` S ) Q ) |
14 |
3 9
|
syl |
|- ( ph -> F ( Trails ` G ) P ) |
15 |
1 2 14 4 6
|
trlreslem |
|- ( ph -> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |
16 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
17 |
16
|
iseupthf1o |
|- ( H ( EulerPaths ` S ) Q <-> ( H ( Walks ` S ) Q /\ H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( iEdg ` S ) ) ) |
18 |
5
|
dmeqd |
|- ( ph -> dom ( iEdg ` S ) = dom ( I |` ( F " ( 0 ..^ N ) ) ) ) |
19 |
18
|
f1oeq3d |
|- ( ph -> ( H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( iEdg ` S ) <-> H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) ) |
20 |
19
|
anbi2d |
|- ( ph -> ( ( H ( Walks ` S ) Q /\ H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( iEdg ` S ) ) <-> ( H ( Walks ` S ) Q /\ H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) ) ) |
21 |
17 20
|
syl5bb |
|- ( ph -> ( H ( EulerPaths ` S ) Q <-> ( H ( Walks ` S ) Q /\ H : ( 0 ..^ ( # ` H ) ) -1-1-onto-> dom ( I |` ( F " ( 0 ..^ N ) ) ) ) ) ) |
22 |
13 15 21
|
mpbir2and |
|- ( ph -> H ( EulerPaths ` S ) Q ) |