Step |
Hyp |
Ref |
Expression |
1 |
|
eupths.i |
|- I = ( iEdg ` G ) |
2 |
|
fveq2 |
|- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
3 |
2 1
|
eqtr4di |
|- ( g = G -> ( iEdg ` g ) = I ) |
4 |
3
|
dmeqd |
|- ( g = G -> dom ( iEdg ` g ) = dom I ) |
5 |
|
foeq3 |
|- ( dom ( iEdg ` g ) = dom I -> ( f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) <-> f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) ) |
6 |
4 5
|
syl |
|- ( g = G -> ( f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) <-> f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) ) |
7 |
6
|
adantl |
|- ( ( T. /\ g = G ) -> ( f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) <-> f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) ) |
8 |
|
wksv |
|- { <. f , p >. | f ( Walks ` G ) p } e. _V |
9 |
|
trliswlk |
|- ( f ( Trails ` G ) p -> f ( Walks ` G ) p ) |
10 |
9
|
ssopab2i |
|- { <. f , p >. | f ( Trails ` G ) p } C_ { <. f , p >. | f ( Walks ` G ) p } |
11 |
8 10
|
ssexi |
|- { <. f , p >. | f ( Trails ` G ) p } e. _V |
12 |
11
|
a1i |
|- ( T. -> { <. f , p >. | f ( Trails ` G ) p } e. _V ) |
13 |
|
df-eupth |
|- EulerPaths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |
14 |
7 12 13
|
fvmptopab |
|- ( T. -> ( EulerPaths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) } ) |
15 |
14
|
mptru |
|- ( EulerPaths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) } |