Step |
Hyp |
Ref |
Expression |
1 |
|
eupths.i |
|- I = ( iEdg ` G ) |
2 |
|
fveq2 |
|- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
3 |
2 1
|
eqtr4di |
|- ( g = G -> ( iEdg ` g ) = I ) |
4 |
3
|
dmeqd |
|- ( g = G -> dom ( iEdg ` g ) = dom I ) |
5 |
|
foeq3 |
|- ( dom ( iEdg ` g ) = dom I -> ( f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) <-> f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) ) |
6 |
4 5
|
syl |
|- ( g = G -> ( f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) <-> f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) ) |
7 |
|
df-eupth |
|- EulerPaths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |
8 |
6 7
|
fvmptopab |
|- ( EulerPaths ` G ) = { <. f , p >. | ( f ( Trails ` G ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom I ) } |