Step |
Hyp |
Ref |
Expression |
1 |
|
eupthvdres.v |
|- V = ( Vtx ` G ) |
2 |
|
eupthvdres.i |
|- I = ( iEdg ` G ) |
3 |
|
eupthvdres.g |
|- ( ph -> G e. W ) |
4 |
|
eupthvdres.f |
|- ( ph -> Fun I ) |
5 |
|
eupthvdres.p |
|- ( ph -> F ( EulerPaths ` G ) P ) |
6 |
|
eupthvdres.h |
|- H = <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. |
7 |
|
opex |
|- <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. e. _V |
8 |
6 7
|
eqeltri |
|- H e. _V |
9 |
8
|
a1i |
|- ( ph -> H e. _V ) |
10 |
6
|
fveq2i |
|- ( Vtx ` H ) = ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) |
11 |
1
|
fvexi |
|- V e. _V |
12 |
2
|
fvexi |
|- I e. _V |
13 |
12
|
resex |
|- ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V |
14 |
11 13
|
pm3.2i |
|- ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) |
15 |
14
|
a1i |
|- ( ph -> ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) ) |
16 |
|
opvtxfv |
|- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = V ) |
17 |
15 16
|
syl |
|- ( ph -> ( Vtx ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = V ) |
18 |
10 17
|
syl5eq |
|- ( ph -> ( Vtx ` H ) = V ) |
19 |
18 1
|
eqtrdi |
|- ( ph -> ( Vtx ` H ) = ( Vtx ` G ) ) |
20 |
6
|
fveq2i |
|- ( iEdg ` H ) = ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) |
21 |
|
opiedgfv |
|- ( ( V e. _V /\ ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) e. _V ) -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) ) |
22 |
15 21
|
syl |
|- ( ph -> ( iEdg ` <. V , ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) >. ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) ) |
23 |
20 22
|
syl5eq |
|- ( ph -> ( iEdg ` H ) = ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) ) |
24 |
2
|
eupthf1o |
|- ( F ( EulerPaths ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) |
25 |
5 24
|
syl |
|- ( ph -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) |
26 |
|
f1ofo |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I -> F : ( 0 ..^ ( # ` F ) ) -onto-> dom I ) |
27 |
|
foima |
|- ( F : ( 0 ..^ ( # ` F ) ) -onto-> dom I -> ( F " ( 0 ..^ ( # ` F ) ) ) = dom I ) |
28 |
25 26 27
|
3syl |
|- ( ph -> ( F " ( 0 ..^ ( # ` F ) ) ) = dom I ) |
29 |
28
|
reseq2d |
|- ( ph -> ( I |` ( F " ( 0 ..^ ( # ` F ) ) ) ) = ( I |` dom I ) ) |
30 |
4
|
funfnd |
|- ( ph -> I Fn dom I ) |
31 |
|
fnresdm |
|- ( I Fn dom I -> ( I |` dom I ) = I ) |
32 |
30 31
|
syl |
|- ( ph -> ( I |` dom I ) = I ) |
33 |
23 29 32
|
3eqtrd |
|- ( ph -> ( iEdg ` H ) = I ) |
34 |
33 2
|
eqtrdi |
|- ( ph -> ( iEdg ` H ) = ( iEdg ` G ) ) |
35 |
3 9 19 34
|
vtxdeqd |
|- ( ph -> ( VtxDeg ` H ) = ( VtxDeg ` G ) ) |