Description: Two ways to express " A is a singleton". (Contributed by NM, 30-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eusn | |- ( E! x x e. A <-> E. x A = { x } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | euabsn |  |-  ( E! x x e. A <-> E. x { x | x e. A } = { x } ) | |
| 2 | abid2 |  |-  { x | x e. A } = A | |
| 3 | 2 | eqeq1i |  |-  ( { x | x e. A } = { x } <-> A = { x } ) | 
| 4 | 3 | exbii |  |-  ( E. x { x | x e. A } = { x } <-> E. x A = { x } ) | 
| 5 | 1 4 | bitri |  |-  ( E! x x e. A <-> E. x A = { x } ) |