Metamath Proof Explorer


Theorem eusn

Description: Two ways to express " A is a singleton". (Contributed by NM, 30-Oct-2010)

Ref Expression
Assertion eusn
|- ( E! x x e. A <-> E. x A = { x } )

Proof

Step Hyp Ref Expression
1 euabsn
 |-  ( E! x x e. A <-> E. x { x | x e. A } = { x } )
2 abid2
 |-  { x | x e. A } = A
3 2 eqeq1i
 |-  ( { x | x e. A } = { x } <-> A = { x } )
4 3 exbii
 |-  ( E. x { x | x e. A } = { x } <-> E. x A = { x } )
5 1 4 bitri
 |-  ( E! x x e. A <-> E. x A = { x } )