Step |
Hyp |
Ref |
Expression |
1 |
|
eusv2.1 |
|- A e. _V |
2 |
|
nfeu1 |
|- F/ y E! y E. x y = A |
3 |
|
nfe1 |
|- F/ x E. x y = A |
4 |
3
|
nfeuw |
|- F/ x E! y E. x y = A |
5 |
1
|
isseti |
|- E. y y = A |
6 |
|
19.8a |
|- ( y = A -> E. x y = A ) |
7 |
6
|
ancri |
|- ( y = A -> ( E. x y = A /\ y = A ) ) |
8 |
5 7
|
eximii |
|- E. y ( E. x y = A /\ y = A ) |
9 |
|
eupick |
|- ( ( E! y E. x y = A /\ E. y ( E. x y = A /\ y = A ) ) -> ( E. x y = A -> y = A ) ) |
10 |
8 9
|
mpan2 |
|- ( E! y E. x y = A -> ( E. x y = A -> y = A ) ) |
11 |
4 10
|
alrimi |
|- ( E! y E. x y = A -> A. x ( E. x y = A -> y = A ) ) |
12 |
|
nf6 |
|- ( F/ x y = A <-> A. x ( E. x y = A -> y = A ) ) |
13 |
11 12
|
sylibr |
|- ( E! y E. x y = A -> F/ x y = A ) |
14 |
2 13
|
alrimi |
|- ( E! y E. x y = A -> A. y F/ x y = A ) |
15 |
|
dfnfc2 |
|- ( A. x A e. _V -> ( F/_ x A <-> A. y F/ x y = A ) ) |
16 |
15 1
|
mpg |
|- ( F/_ x A <-> A. y F/ x y = A ) |
17 |
14 16
|
sylibr |
|- ( E! y E. x y = A -> F/_ x A ) |
18 |
|
eusvnfb |
|- ( E! y A. x y = A <-> ( F/_ x A /\ A e. _V ) ) |
19 |
1 18
|
mpbiran2 |
|- ( E! y A. x y = A <-> F/_ x A ) |
20 |
|
eusv2i |
|- ( E! y A. x y = A -> E! y E. x y = A ) |
21 |
19 20
|
sylbir |
|- ( F/_ x A -> E! y E. x y = A ) |
22 |
17 21
|
impbii |
|- ( E! y E. x y = A <-> F/_ x A ) |