Step |
Hyp |
Ref |
Expression |
1 |
|
euex |
|- ( E! y A. x y = A -> E. y A. x y = A ) |
2 |
|
nfcv |
|- F/_ x z |
3 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ A |
4 |
3
|
nfeq2 |
|- F/ x y = [_ z / x ]_ A |
5 |
|
csbeq1a |
|- ( x = z -> A = [_ z / x ]_ A ) |
6 |
5
|
eqeq2d |
|- ( x = z -> ( y = A <-> y = [_ z / x ]_ A ) ) |
7 |
2 4 6
|
spcgf |
|- ( z e. _V -> ( A. x y = A -> y = [_ z / x ]_ A ) ) |
8 |
7
|
elv |
|- ( A. x y = A -> y = [_ z / x ]_ A ) |
9 |
|
nfcv |
|- F/_ x w |
10 |
|
nfcsb1v |
|- F/_ x [_ w / x ]_ A |
11 |
10
|
nfeq2 |
|- F/ x y = [_ w / x ]_ A |
12 |
|
csbeq1a |
|- ( x = w -> A = [_ w / x ]_ A ) |
13 |
12
|
eqeq2d |
|- ( x = w -> ( y = A <-> y = [_ w / x ]_ A ) ) |
14 |
9 11 13
|
spcgf |
|- ( w e. _V -> ( A. x y = A -> y = [_ w / x ]_ A ) ) |
15 |
14
|
elv |
|- ( A. x y = A -> y = [_ w / x ]_ A ) |
16 |
8 15
|
eqtr3d |
|- ( A. x y = A -> [_ z / x ]_ A = [_ w / x ]_ A ) |
17 |
16
|
alrimivv |
|- ( A. x y = A -> A. z A. w [_ z / x ]_ A = [_ w / x ]_ A ) |
18 |
|
sbnfc2 |
|- ( F/_ x A <-> A. z A. w [_ z / x ]_ A = [_ w / x ]_ A ) |
19 |
17 18
|
sylibr |
|- ( A. x y = A -> F/_ x A ) |
20 |
19
|
exlimiv |
|- ( E. y A. x y = A -> F/_ x A ) |
21 |
1 20
|
syl |
|- ( E! y A. x y = A -> F/_ x A ) |