| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euex |  |-  ( E! y A. x y = A -> E. y A. x y = A ) | 
						
							| 2 |  | nfcv |  |-  F/_ x z | 
						
							| 3 |  | nfcsb1v |  |-  F/_ x [_ z / x ]_ A | 
						
							| 4 | 3 | nfeq2 |  |-  F/ x y = [_ z / x ]_ A | 
						
							| 5 |  | csbeq1a |  |-  ( x = z -> A = [_ z / x ]_ A ) | 
						
							| 6 | 5 | eqeq2d |  |-  ( x = z -> ( y = A <-> y = [_ z / x ]_ A ) ) | 
						
							| 7 | 2 4 6 | spcgf |  |-  ( z e. _V -> ( A. x y = A -> y = [_ z / x ]_ A ) ) | 
						
							| 8 | 7 | elv |  |-  ( A. x y = A -> y = [_ z / x ]_ A ) | 
						
							| 9 |  | nfcv |  |-  F/_ x w | 
						
							| 10 |  | nfcsb1v |  |-  F/_ x [_ w / x ]_ A | 
						
							| 11 | 10 | nfeq2 |  |-  F/ x y = [_ w / x ]_ A | 
						
							| 12 |  | csbeq1a |  |-  ( x = w -> A = [_ w / x ]_ A ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( x = w -> ( y = A <-> y = [_ w / x ]_ A ) ) | 
						
							| 14 | 9 11 13 | spcgf |  |-  ( w e. _V -> ( A. x y = A -> y = [_ w / x ]_ A ) ) | 
						
							| 15 | 14 | elv |  |-  ( A. x y = A -> y = [_ w / x ]_ A ) | 
						
							| 16 | 8 15 | eqtr3d |  |-  ( A. x y = A -> [_ z / x ]_ A = [_ w / x ]_ A ) | 
						
							| 17 | 16 | alrimivv |  |-  ( A. x y = A -> A. z A. w [_ z / x ]_ A = [_ w / x ]_ A ) | 
						
							| 18 |  | sbnfc2 |  |-  ( F/_ x A <-> A. z A. w [_ z / x ]_ A = [_ w / x ]_ A ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( A. x y = A -> F/_ x A ) | 
						
							| 20 | 19 | exlimiv |  |-  ( E. y A. x y = A -> F/_ x A ) | 
						
							| 21 | 1 20 | syl |  |-  ( E! y A. x y = A -> F/_ x A ) |