| Step |
Hyp |
Ref |
Expression |
| 1 |
|
euex |
|- ( E! y A. x y = A -> E. y A. x y = A ) |
| 2 |
|
nfcv |
|- F/_ x z |
| 3 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ A |
| 4 |
3
|
nfeq2 |
|- F/ x y = [_ z / x ]_ A |
| 5 |
|
csbeq1a |
|- ( x = z -> A = [_ z / x ]_ A ) |
| 6 |
5
|
eqeq2d |
|- ( x = z -> ( y = A <-> y = [_ z / x ]_ A ) ) |
| 7 |
2 4 6
|
spcgf |
|- ( z e. _V -> ( A. x y = A -> y = [_ z / x ]_ A ) ) |
| 8 |
7
|
elv |
|- ( A. x y = A -> y = [_ z / x ]_ A ) |
| 9 |
|
nfcv |
|- F/_ x w |
| 10 |
|
nfcsb1v |
|- F/_ x [_ w / x ]_ A |
| 11 |
10
|
nfeq2 |
|- F/ x y = [_ w / x ]_ A |
| 12 |
|
csbeq1a |
|- ( x = w -> A = [_ w / x ]_ A ) |
| 13 |
12
|
eqeq2d |
|- ( x = w -> ( y = A <-> y = [_ w / x ]_ A ) ) |
| 14 |
9 11 13
|
spcgf |
|- ( w e. _V -> ( A. x y = A -> y = [_ w / x ]_ A ) ) |
| 15 |
14
|
elv |
|- ( A. x y = A -> y = [_ w / x ]_ A ) |
| 16 |
8 15
|
eqtr3d |
|- ( A. x y = A -> [_ z / x ]_ A = [_ w / x ]_ A ) |
| 17 |
16
|
alrimivv |
|- ( A. x y = A -> A. z A. w [_ z / x ]_ A = [_ w / x ]_ A ) |
| 18 |
|
sbnfc2 |
|- ( F/_ x A <-> A. z A. w [_ z / x ]_ A = [_ w / x ]_ A ) |
| 19 |
17 18
|
sylibr |
|- ( A. x y = A -> F/_ x A ) |
| 20 |
19
|
exlimiv |
|- ( E. y A. x y = A -> F/_ x A ) |
| 21 |
1 20
|
syl |
|- ( E! y A. x y = A -> F/_ x A ) |