| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eusvnf |  |-  ( E! y A. x y = A -> F/_ x A ) | 
						
							| 2 |  | euex |  |-  ( E! y A. x y = A -> E. y A. x y = A ) | 
						
							| 3 |  | eqvisset |  |-  ( y = A -> A e. _V ) | 
						
							| 4 | 3 | sps |  |-  ( A. x y = A -> A e. _V ) | 
						
							| 5 | 4 | exlimiv |  |-  ( E. y A. x y = A -> A e. _V ) | 
						
							| 6 | 2 5 | syl |  |-  ( E! y A. x y = A -> A e. _V ) | 
						
							| 7 | 1 6 | jca |  |-  ( E! y A. x y = A -> ( F/_ x A /\ A e. _V ) ) | 
						
							| 8 |  | isset |  |-  ( A e. _V <-> E. y y = A ) | 
						
							| 9 |  | nfcvd |  |-  ( F/_ x A -> F/_ x y ) | 
						
							| 10 |  | id |  |-  ( F/_ x A -> F/_ x A ) | 
						
							| 11 | 9 10 | nfeqd |  |-  ( F/_ x A -> F/ x y = A ) | 
						
							| 12 | 11 | nf5rd |  |-  ( F/_ x A -> ( y = A -> A. x y = A ) ) | 
						
							| 13 | 12 | eximdv |  |-  ( F/_ x A -> ( E. y y = A -> E. y A. x y = A ) ) | 
						
							| 14 | 8 13 | biimtrid |  |-  ( F/_ x A -> ( A e. _V -> E. y A. x y = A ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( F/_ x A /\ A e. _V ) -> E. y A. x y = A ) | 
						
							| 16 |  | eusv1 |  |-  ( E! y A. x y = A <-> E. y A. x y = A ) | 
						
							| 17 | 15 16 | sylibr |  |-  ( ( F/_ x A /\ A e. _V ) -> E! y A. x y = A ) | 
						
							| 18 | 7 17 | impbii |  |-  ( E! y A. x y = A <-> ( F/_ x A /\ A e. _V ) ) |