Step |
Hyp |
Ref |
Expression |
1 |
|
euxfr2.1 |
|- A e. _V |
2 |
|
euxfr2.2 |
|- E* y x = A |
3 |
|
2euswap |
|- ( A. x E* y ( x = A /\ ph ) -> ( E! x E. y ( x = A /\ ph ) -> E! y E. x ( x = A /\ ph ) ) ) |
4 |
2
|
moani |
|- E* y ( ph /\ x = A ) |
5 |
|
ancom |
|- ( ( ph /\ x = A ) <-> ( x = A /\ ph ) ) |
6 |
5
|
mobii |
|- ( E* y ( ph /\ x = A ) <-> E* y ( x = A /\ ph ) ) |
7 |
4 6
|
mpbi |
|- E* y ( x = A /\ ph ) |
8 |
3 7
|
mpg |
|- ( E! x E. y ( x = A /\ ph ) -> E! y E. x ( x = A /\ ph ) ) |
9 |
|
2euswap |
|- ( A. y E* x ( x = A /\ ph ) -> ( E! y E. x ( x = A /\ ph ) -> E! x E. y ( x = A /\ ph ) ) ) |
10 |
|
moeq |
|- E* x x = A |
11 |
10
|
moani |
|- E* x ( ph /\ x = A ) |
12 |
5
|
mobii |
|- ( E* x ( ph /\ x = A ) <-> E* x ( x = A /\ ph ) ) |
13 |
11 12
|
mpbi |
|- E* x ( x = A /\ ph ) |
14 |
9 13
|
mpg |
|- ( E! y E. x ( x = A /\ ph ) -> E! x E. y ( x = A /\ ph ) ) |
15 |
8 14
|
impbii |
|- ( E! x E. y ( x = A /\ ph ) <-> E! y E. x ( x = A /\ ph ) ) |
16 |
|
biidd |
|- ( x = A -> ( ph <-> ph ) ) |
17 |
1 16
|
ceqsexv |
|- ( E. x ( x = A /\ ph ) <-> ph ) |
18 |
17
|
eubii |
|- ( E! y E. x ( x = A /\ ph ) <-> E! y ph ) |
19 |
15 18
|
bitri |
|- ( E! x E. y ( x = A /\ ph ) <-> E! y ph ) |