Metamath Proof Explorer


Theorem euxfrw

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Version of euxfr with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 14-Nov-2004) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses euxfrw.1
|- A e. _V
euxfrw.2
|- E! y x = A
euxfrw.3
|- ( x = A -> ( ph <-> ps ) )
Assertion euxfrw
|- ( E! x ph <-> E! y ps )

Proof

Step Hyp Ref Expression
1 euxfrw.1
 |-  A e. _V
2 euxfrw.2
 |-  E! y x = A
3 euxfrw.3
 |-  ( x = A -> ( ph <-> ps ) )
4 euex
 |-  ( E! y x = A -> E. y x = A )
5 2 4 ax-mp
 |-  E. y x = A
6 5 biantrur
 |-  ( ph <-> ( E. y x = A /\ ph ) )
7 19.41v
 |-  ( E. y ( x = A /\ ph ) <-> ( E. y x = A /\ ph ) )
8 3 pm5.32i
 |-  ( ( x = A /\ ph ) <-> ( x = A /\ ps ) )
9 8 exbii
 |-  ( E. y ( x = A /\ ph ) <-> E. y ( x = A /\ ps ) )
10 6 7 9 3bitr2i
 |-  ( ph <-> E. y ( x = A /\ ps ) )
11 10 eubii
 |-  ( E! x ph <-> E! x E. y ( x = A /\ ps ) )
12 2 eumoi
 |-  E* y x = A
13 1 12 euxfr2w
 |-  ( E! x E. y ( x = A /\ ps ) <-> E! y ps )
14 11 13 bitri
 |-  ( E! x ph <-> E! y ps )