Step |
Hyp |
Ref |
Expression |
1 |
|
euxfrw.1 |
|- A e. _V |
2 |
|
euxfrw.2 |
|- E! y x = A |
3 |
|
euxfrw.3 |
|- ( x = A -> ( ph <-> ps ) ) |
4 |
|
euex |
|- ( E! y x = A -> E. y x = A ) |
5 |
2 4
|
ax-mp |
|- E. y x = A |
6 |
5
|
biantrur |
|- ( ph <-> ( E. y x = A /\ ph ) ) |
7 |
|
19.41v |
|- ( E. y ( x = A /\ ph ) <-> ( E. y x = A /\ ph ) ) |
8 |
3
|
pm5.32i |
|- ( ( x = A /\ ph ) <-> ( x = A /\ ps ) ) |
9 |
8
|
exbii |
|- ( E. y ( x = A /\ ph ) <-> E. y ( x = A /\ ps ) ) |
10 |
6 7 9
|
3bitr2i |
|- ( ph <-> E. y ( x = A /\ ps ) ) |
11 |
10
|
eubii |
|- ( E! x ph <-> E! x E. y ( x = A /\ ps ) ) |
12 |
2
|
eumoi |
|- E* y x = A |
13 |
1 12
|
euxfr2w |
|- ( E! x E. y ( x = A /\ ps ) <-> E! y ps ) |
14 |
11 13
|
bitri |
|- ( E! x ph <-> E! y ps ) |