| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euxfrw.1 |  |-  A e. _V | 
						
							| 2 |  | euxfrw.2 |  |-  E! y x = A | 
						
							| 3 |  | euxfrw.3 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 4 |  | euex |  |-  ( E! y x = A -> E. y x = A ) | 
						
							| 5 | 2 4 | ax-mp |  |-  E. y x = A | 
						
							| 6 | 5 | biantrur |  |-  ( ph <-> ( E. y x = A /\ ph ) ) | 
						
							| 7 |  | 19.41v |  |-  ( E. y ( x = A /\ ph ) <-> ( E. y x = A /\ ph ) ) | 
						
							| 8 | 3 | pm5.32i |  |-  ( ( x = A /\ ph ) <-> ( x = A /\ ps ) ) | 
						
							| 9 | 8 | exbii |  |-  ( E. y ( x = A /\ ph ) <-> E. y ( x = A /\ ps ) ) | 
						
							| 10 | 6 7 9 | 3bitr2i |  |-  ( ph <-> E. y ( x = A /\ ps ) ) | 
						
							| 11 | 10 | eubii |  |-  ( E! x ph <-> E! x E. y ( x = A /\ ps ) ) | 
						
							| 12 | 2 | eumoi |  |-  E* y x = A | 
						
							| 13 | 1 12 | euxfr2w |  |-  ( E! x E. y ( x = A /\ ps ) <-> E! y ps ) | 
						
							| 14 | 11 13 | bitri |  |-  ( E! x ph <-> E! y ps ) |