| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evenelz |  |-  ( 2 || N -> N e. ZZ ) | 
						
							| 2 |  | 2z |  |-  2 e. ZZ | 
						
							| 3 | 2 | a1i |  |-  ( n e. ZZ -> 2 e. ZZ ) | 
						
							| 4 |  | id |  |-  ( n e. ZZ -> n e. ZZ ) | 
						
							| 5 | 3 4 | zmulcld |  |-  ( n e. ZZ -> ( 2 x. n ) e. ZZ ) | 
						
							| 6 | 5 | adantr |  |-  ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> ( 2 x. n ) e. ZZ ) | 
						
							| 7 |  | eleq1 |  |-  ( ( 2 x. n ) = N -> ( ( 2 x. n ) e. ZZ <-> N e. ZZ ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> ( ( 2 x. n ) e. ZZ <-> N e. ZZ ) ) | 
						
							| 9 | 6 8 | mpbid |  |-  ( ( n e. ZZ /\ ( 2 x. n ) = N ) -> N e. ZZ ) | 
						
							| 10 | 9 | rexlimiva |  |-  ( E. n e. ZZ ( 2 x. n ) = N -> N e. ZZ ) | 
						
							| 11 |  | divides |  |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. n e. ZZ ( n x. 2 ) = N ) ) | 
						
							| 12 |  | zcn |  |-  ( n e. ZZ -> n e. CC ) | 
						
							| 13 |  | 2cnd |  |-  ( n e. ZZ -> 2 e. CC ) | 
						
							| 14 | 12 13 | mulcomd |  |-  ( n e. ZZ -> ( n x. 2 ) = ( 2 x. n ) ) | 
						
							| 15 | 14 | eqeq1d |  |-  ( n e. ZZ -> ( ( n x. 2 ) = N <-> ( 2 x. n ) = N ) ) | 
						
							| 16 | 15 | rexbiia |  |-  ( E. n e. ZZ ( n x. 2 ) = N <-> E. n e. ZZ ( 2 x. n ) = N ) | 
						
							| 17 | 11 16 | bitrdi |  |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) | 
						
							| 18 | 2 17 | mpan |  |-  ( N e. ZZ -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) | 
						
							| 19 | 1 10 18 | pm5.21nii |  |-  ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) |