Step |
Hyp |
Ref |
Expression |
1 |
|
3odd |
|- 3 e. Odd |
2 |
1
|
a1i |
|- ( N e. ( ZZ>= ` 9 ) -> 3 e. Odd ) |
3 |
2
|
anim1i |
|- ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) -> ( 3 e. Odd /\ N e. Even ) ) |
4 |
3
|
ancomd |
|- ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) -> ( N e. Even /\ 3 e. Odd ) ) |
5 |
|
emoo |
|- ( ( N e. Even /\ 3 e. Odd ) -> ( N - 3 ) e. Odd ) |
6 |
4 5
|
syl |
|- ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) -> ( N - 3 ) e. Odd ) |
7 |
|
breq2 |
|- ( m = ( N - 3 ) -> ( 5 < m <-> 5 < ( N - 3 ) ) ) |
8 |
|
eleq1 |
|- ( m = ( N - 3 ) -> ( m e. GoldbachOddW <-> ( N - 3 ) e. GoldbachOddW ) ) |
9 |
7 8
|
imbi12d |
|- ( m = ( N - 3 ) -> ( ( 5 < m -> m e. GoldbachOddW ) <-> ( 5 < ( N - 3 ) -> ( N - 3 ) e. GoldbachOddW ) ) ) |
10 |
9
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) /\ m = ( N - 3 ) ) -> ( ( 5 < m -> m e. GoldbachOddW ) <-> ( 5 < ( N - 3 ) -> ( N - 3 ) e. GoldbachOddW ) ) ) |
11 |
6 10
|
rspcdv |
|- ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) -> ( A. m e. Odd ( 5 < m -> m e. GoldbachOddW ) -> ( 5 < ( N - 3 ) -> ( N - 3 ) e. GoldbachOddW ) ) ) |
12 |
|
eluz2 |
|- ( N e. ( ZZ>= ` 9 ) <-> ( 9 e. ZZ /\ N e. ZZ /\ 9 <_ N ) ) |
13 |
|
5p3e8 |
|- ( 5 + 3 ) = 8 |
14 |
|
8p1e9 |
|- ( 8 + 1 ) = 9 |
15 |
|
9cn |
|- 9 e. CC |
16 |
|
ax-1cn |
|- 1 e. CC |
17 |
|
8cn |
|- 8 e. CC |
18 |
15 16 17
|
subadd2i |
|- ( ( 9 - 1 ) = 8 <-> ( 8 + 1 ) = 9 ) |
19 |
14 18
|
mpbir |
|- ( 9 - 1 ) = 8 |
20 |
13 19
|
eqtr4i |
|- ( 5 + 3 ) = ( 9 - 1 ) |
21 |
|
zlem1lt |
|- ( ( 9 e. ZZ /\ N e. ZZ ) -> ( 9 <_ N <-> ( 9 - 1 ) < N ) ) |
22 |
21
|
biimp3a |
|- ( ( 9 e. ZZ /\ N e. ZZ /\ 9 <_ N ) -> ( 9 - 1 ) < N ) |
23 |
20 22
|
eqbrtrid |
|- ( ( 9 e. ZZ /\ N e. ZZ /\ 9 <_ N ) -> ( 5 + 3 ) < N ) |
24 |
|
5re |
|- 5 e. RR |
25 |
24
|
a1i |
|- ( N e. ZZ -> 5 e. RR ) |
26 |
|
3re |
|- 3 e. RR |
27 |
26
|
a1i |
|- ( N e. ZZ -> 3 e. RR ) |
28 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
29 |
25 27 28
|
3jca |
|- ( N e. ZZ -> ( 5 e. RR /\ 3 e. RR /\ N e. RR ) ) |
30 |
29
|
3ad2ant2 |
|- ( ( 9 e. ZZ /\ N e. ZZ /\ 9 <_ N ) -> ( 5 e. RR /\ 3 e. RR /\ N e. RR ) ) |
31 |
|
ltaddsub |
|- ( ( 5 e. RR /\ 3 e. RR /\ N e. RR ) -> ( ( 5 + 3 ) < N <-> 5 < ( N - 3 ) ) ) |
32 |
30 31
|
syl |
|- ( ( 9 e. ZZ /\ N e. ZZ /\ 9 <_ N ) -> ( ( 5 + 3 ) < N <-> 5 < ( N - 3 ) ) ) |
33 |
23 32
|
mpbid |
|- ( ( 9 e. ZZ /\ N e. ZZ /\ 9 <_ N ) -> 5 < ( N - 3 ) ) |
34 |
12 33
|
sylbi |
|- ( N e. ( ZZ>= ` 9 ) -> 5 < ( N - 3 ) ) |
35 |
34
|
adantr |
|- ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) -> 5 < ( N - 3 ) ) |
36 |
|
simpr |
|- ( ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOddW ) -> ( N - 3 ) e. GoldbachOddW ) |
37 |
|
oveq1 |
|- ( o = ( N - 3 ) -> ( o + 3 ) = ( ( N - 3 ) + 3 ) ) |
38 |
37
|
eqeq2d |
|- ( o = ( N - 3 ) -> ( N = ( o + 3 ) <-> N = ( ( N - 3 ) + 3 ) ) ) |
39 |
38
|
adantl |
|- ( ( ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOddW ) /\ o = ( N - 3 ) ) -> ( N = ( o + 3 ) <-> N = ( ( N - 3 ) + 3 ) ) ) |
40 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` 9 ) -> N e. CC ) |
41 |
|
3cn |
|- 3 e. CC |
42 |
41
|
a1i |
|- ( N e. ( ZZ>= ` 9 ) -> 3 e. CC ) |
43 |
40 42
|
jca |
|- ( N e. ( ZZ>= ` 9 ) -> ( N e. CC /\ 3 e. CC ) ) |
44 |
43
|
adantr |
|- ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) -> ( N e. CC /\ 3 e. CC ) ) |
45 |
44
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOddW ) -> ( N e. CC /\ 3 e. CC ) ) |
46 |
|
npcan |
|- ( ( N e. CC /\ 3 e. CC ) -> ( ( N - 3 ) + 3 ) = N ) |
47 |
46
|
eqcomd |
|- ( ( N e. CC /\ 3 e. CC ) -> N = ( ( N - 3 ) + 3 ) ) |
48 |
45 47
|
syl |
|- ( ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOddW ) -> N = ( ( N - 3 ) + 3 ) ) |
49 |
36 39 48
|
rspcedvd |
|- ( ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) /\ ( N - 3 ) e. GoldbachOddW ) -> E. o e. GoldbachOddW N = ( o + 3 ) ) |
50 |
49
|
ex |
|- ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) -> ( ( N - 3 ) e. GoldbachOddW -> E. o e. GoldbachOddW N = ( o + 3 ) ) ) |
51 |
35 50
|
embantd |
|- ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) -> ( ( 5 < ( N - 3 ) -> ( N - 3 ) e. GoldbachOddW ) -> E. o e. GoldbachOddW N = ( o + 3 ) ) ) |
52 |
11 51
|
syldc |
|- ( A. m e. Odd ( 5 < m -> m e. GoldbachOddW ) -> ( ( N e. ( ZZ>= ` 9 ) /\ N e. Even ) -> E. o e. GoldbachOddW N = ( o + 3 ) ) ) |