| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							evenz | 
							 |-  ( Z e. Even -> Z e. ZZ )  | 
						
						
							| 2 | 
							
								
							 | 
							peano2zm | 
							 |-  ( Z e. ZZ -> ( Z - 1 ) e. ZZ )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( Z e. Even -> ( Z - 1 ) e. ZZ )  | 
						
						
							| 4 | 
							
								
							 | 
							iseven | 
							 |-  ( Z e. Even <-> ( Z e. ZZ /\ ( Z / 2 ) e. ZZ ) )  | 
						
						
							| 5 | 
							
								
							 | 
							zcn | 
							 |-  ( Z e. ZZ -> Z e. CC )  | 
						
						
							| 6 | 
							
								
							 | 
							npcan1 | 
							 |-  ( Z e. CC -> ( ( Z - 1 ) + 1 ) = Z )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( Z e. ZZ -> ( ( Z - 1 ) + 1 ) = Z )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqcomd | 
							 |-  ( Z e. ZZ -> Z = ( ( Z - 1 ) + 1 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq1d | 
							 |-  ( Z e. ZZ -> ( Z / 2 ) = ( ( ( Z - 1 ) + 1 ) / 2 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eleq1d | 
							 |-  ( Z e. ZZ -> ( ( Z / 2 ) e. ZZ <-> ( ( ( Z - 1 ) + 1 ) / 2 ) e. ZZ ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							biimpa | 
							 |-  ( ( Z e. ZZ /\ ( Z / 2 ) e. ZZ ) -> ( ( ( Z - 1 ) + 1 ) / 2 ) e. ZZ )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							sylbi | 
							 |-  ( Z e. Even -> ( ( ( Z - 1 ) + 1 ) / 2 ) e. ZZ )  | 
						
						
							| 13 | 
							
								
							 | 
							isodd | 
							 |-  ( ( Z - 1 ) e. Odd <-> ( ( Z - 1 ) e. ZZ /\ ( ( ( Z - 1 ) + 1 ) / 2 ) e. ZZ ) )  | 
						
						
							| 14 | 
							
								3 12 13
							 | 
							sylanbrc | 
							 |-  ( Z e. Even -> ( Z - 1 ) e. Odd )  |