| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( ( 2 x. n ) = N -> ( ( 2 x. n ) e. NN0 <-> N e. NN0 ) ) | 
						
							| 2 |  | simpr |  |-  ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> n e. ZZ ) | 
						
							| 3 |  | 2rp |  |-  2 e. RR+ | 
						
							| 4 | 3 | a1i |  |-  ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> 2 e. RR+ ) | 
						
							| 5 |  | zre |  |-  ( n e. ZZ -> n e. RR ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> n e. RR ) | 
						
							| 7 |  | nn0ge0 |  |-  ( ( 2 x. n ) e. NN0 -> 0 <_ ( 2 x. n ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> 0 <_ ( 2 x. n ) ) | 
						
							| 9 | 4 6 8 | prodge0rd |  |-  ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> 0 <_ n ) | 
						
							| 10 |  | elnn0z |  |-  ( n e. NN0 <-> ( n e. ZZ /\ 0 <_ n ) ) | 
						
							| 11 | 2 9 10 | sylanbrc |  |-  ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> n e. NN0 ) | 
						
							| 12 | 11 | ex |  |-  ( ( 2 x. n ) e. NN0 -> ( n e. ZZ -> n e. NN0 ) ) | 
						
							| 13 | 1 12 | biimtrrdi |  |-  ( ( 2 x. n ) = N -> ( N e. NN0 -> ( n e. ZZ -> n e. NN0 ) ) ) | 
						
							| 14 | 13 | com13 |  |-  ( n e. ZZ -> ( N e. NN0 -> ( ( 2 x. n ) = N -> n e. NN0 ) ) ) | 
						
							| 15 | 14 | impcom |  |-  ( ( N e. NN0 /\ n e. ZZ ) -> ( ( 2 x. n ) = N -> n e. NN0 ) ) | 
						
							| 16 | 15 | pm4.71rd |  |-  ( ( N e. NN0 /\ n e. ZZ ) -> ( ( 2 x. n ) = N <-> ( n e. NN0 /\ ( 2 x. n ) = N ) ) ) | 
						
							| 17 | 16 | bicomd |  |-  ( ( N e. NN0 /\ n e. ZZ ) -> ( ( n e. NN0 /\ ( 2 x. n ) = N ) <-> ( 2 x. n ) = N ) ) | 
						
							| 18 | 17 | rexbidva |  |-  ( N e. NN0 -> ( E. n e. ZZ ( n e. NN0 /\ ( 2 x. n ) = N ) <-> E. n e. ZZ ( 2 x. n ) = N ) ) | 
						
							| 19 |  | nn0ssz |  |-  NN0 C_ ZZ | 
						
							| 20 |  | rexss |  |-  ( NN0 C_ ZZ -> ( E. n e. NN0 ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN0 /\ ( 2 x. n ) = N ) ) ) | 
						
							| 21 | 19 20 | mp1i |  |-  ( N e. NN0 -> ( E. n e. NN0 ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN0 /\ ( 2 x. n ) = N ) ) ) | 
						
							| 22 |  | even2n |  |-  ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) | 
						
							| 23 | 22 | a1i |  |-  ( N e. NN0 -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) | 
						
							| 24 | 18 21 23 | 3bitr4rd |  |-  ( N e. NN0 -> ( 2 || N <-> E. n e. NN0 ( 2 x. n ) = N ) ) |