| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( ( 2 x. n ) = N -> ( ( 2 x. n ) e. NN <-> N e. NN ) ) | 
						
							| 2 |  | simpr |  |-  ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> n e. ZZ ) | 
						
							| 3 |  | 2re |  |-  2 e. RR | 
						
							| 4 | 3 | a1i |  |-  ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> 2 e. RR ) | 
						
							| 5 |  | zre |  |-  ( n e. ZZ -> n e. RR ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> n e. RR ) | 
						
							| 7 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 8 | 7 | a1i |  |-  ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> 0 <_ 2 ) | 
						
							| 9 |  | nngt0 |  |-  ( ( 2 x. n ) e. NN -> 0 < ( 2 x. n ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> 0 < ( 2 x. n ) ) | 
						
							| 11 |  | prodgt0 |  |-  ( ( ( 2 e. RR /\ n e. RR ) /\ ( 0 <_ 2 /\ 0 < ( 2 x. n ) ) ) -> 0 < n ) | 
						
							| 12 | 4 6 8 10 11 | syl22anc |  |-  ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> 0 < n ) | 
						
							| 13 |  | elnnz |  |-  ( n e. NN <-> ( n e. ZZ /\ 0 < n ) ) | 
						
							| 14 | 2 12 13 | sylanbrc |  |-  ( ( ( 2 x. n ) e. NN /\ n e. ZZ ) -> n e. NN ) | 
						
							| 15 | 14 | ex |  |-  ( ( 2 x. n ) e. NN -> ( n e. ZZ -> n e. NN ) ) | 
						
							| 16 | 1 15 | biimtrrdi |  |-  ( ( 2 x. n ) = N -> ( N e. NN -> ( n e. ZZ -> n e. NN ) ) ) | 
						
							| 17 | 16 | com13 |  |-  ( n e. ZZ -> ( N e. NN -> ( ( 2 x. n ) = N -> n e. NN ) ) ) | 
						
							| 18 | 17 | impcom |  |-  ( ( N e. NN /\ n e. ZZ ) -> ( ( 2 x. n ) = N -> n e. NN ) ) | 
						
							| 19 | 18 | pm4.71rd |  |-  ( ( N e. NN /\ n e. ZZ ) -> ( ( 2 x. n ) = N <-> ( n e. NN /\ ( 2 x. n ) = N ) ) ) | 
						
							| 20 | 19 | bicomd |  |-  ( ( N e. NN /\ n e. ZZ ) -> ( ( n e. NN /\ ( 2 x. n ) = N ) <-> ( 2 x. n ) = N ) ) | 
						
							| 21 | 20 | rexbidva |  |-  ( N e. NN -> ( E. n e. ZZ ( n e. NN /\ ( 2 x. n ) = N ) <-> E. n e. ZZ ( 2 x. n ) = N ) ) | 
						
							| 22 |  | nnssz |  |-  NN C_ ZZ | 
						
							| 23 |  | rexss |  |-  ( NN C_ ZZ -> ( E. n e. NN ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN /\ ( 2 x. n ) = N ) ) ) | 
						
							| 24 | 22 23 | mp1i |  |-  ( N e. NN -> ( E. n e. NN ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN /\ ( 2 x. n ) = N ) ) ) | 
						
							| 25 |  | even2n |  |-  ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) | 
						
							| 26 | 25 | a1i |  |-  ( N e. NN -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) | 
						
							| 27 | 21 24 26 | 3bitr4rd |  |-  ( N e. NN -> ( 2 || N <-> E. n e. NN ( 2 x. n ) = N ) ) |