Step |
Hyp |
Ref |
Expression |
1 |
|
2a1 |
|- ( P = 2 -> ( P e. Prime -> ( P e. Even -> P = 2 ) ) ) |
2 |
|
df-ne |
|- ( P =/= 2 <-> -. P = 2 ) |
3 |
2
|
biimpri |
|- ( -. P = 2 -> P =/= 2 ) |
4 |
3
|
anim2i |
|- ( ( P e. Prime /\ -. P = 2 ) -> ( P e. Prime /\ P =/= 2 ) ) |
5 |
4
|
ancoms |
|- ( ( -. P = 2 /\ P e. Prime ) -> ( P e. Prime /\ P =/= 2 ) ) |
6 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
7 |
5 6
|
sylibr |
|- ( ( -. P = 2 /\ P e. Prime ) -> P e. ( Prime \ { 2 } ) ) |
8 |
|
oddprmALTV |
|- ( P e. ( Prime \ { 2 } ) -> P e. Odd ) |
9 |
|
oddneven |
|- ( P e. Odd -> -. P e. Even ) |
10 |
9
|
pm2.21d |
|- ( P e. Odd -> ( P e. Even -> P = 2 ) ) |
11 |
7 8 10
|
3syl |
|- ( ( -. P = 2 /\ P e. Prime ) -> ( P e. Even -> P = 2 ) ) |
12 |
11
|
ex |
|- ( -. P = 2 -> ( P e. Prime -> ( P e. Even -> P = 2 ) ) ) |
13 |
1 12
|
pm2.61i |
|- ( P e. Prime -> ( P e. Even -> P = 2 ) ) |
14 |
|
2evenALTV |
|- 2 e. Even |
15 |
|
eleq1 |
|- ( P = 2 -> ( P e. Even <-> 2 e. Even ) ) |
16 |
14 15
|
mpbiri |
|- ( P = 2 -> P e. Even ) |
17 |
13 16
|
impbid1 |
|- ( P e. Prime -> ( P e. Even <-> P = 2 ) ) |