Step |
Hyp |
Ref |
Expression |
1 |
|
epee |
|- ( ( A e. Even /\ B e. Even ) -> ( A + B ) e. Even ) |
2 |
1
|
expcom |
|- ( B e. Even -> ( A e. Even -> ( A + B ) e. Even ) ) |
3 |
2
|
adantl |
|- ( ( A e. ZZ /\ B e. Even ) -> ( A e. Even -> ( A + B ) e. Even ) ) |
4 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
5 |
|
evenz |
|- ( B e. Even -> B e. ZZ ) |
6 |
5
|
zcnd |
|- ( B e. Even -> B e. CC ) |
7 |
|
pncan |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - B ) = A ) |
8 |
4 6 7
|
syl2an |
|- ( ( A e. ZZ /\ B e. Even ) -> ( ( A + B ) - B ) = A ) |
9 |
8
|
adantr |
|- ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> ( ( A + B ) - B ) = A ) |
10 |
|
simpr |
|- ( ( A e. ZZ /\ B e. Even ) -> B e. Even ) |
11 |
10
|
anim1i |
|- ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> ( B e. Even /\ ( A + B ) e. Even ) ) |
12 |
11
|
ancomd |
|- ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> ( ( A + B ) e. Even /\ B e. Even ) ) |
13 |
|
emee |
|- ( ( ( A + B ) e. Even /\ B e. Even ) -> ( ( A + B ) - B ) e. Even ) |
14 |
12 13
|
syl |
|- ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> ( ( A + B ) - B ) e. Even ) |
15 |
9 14
|
eqeltrrd |
|- ( ( ( A e. ZZ /\ B e. Even ) /\ ( A + B ) e. Even ) -> A e. Even ) |
16 |
15
|
ex |
|- ( ( A e. ZZ /\ B e. Even ) -> ( ( A + B ) e. Even -> A e. Even ) ) |
17 |
3 16
|
impbid |
|- ( ( A e. ZZ /\ B e. Even ) -> ( A e. Even <-> ( A + B ) e. Even ) ) |