Metamath Proof Explorer


Theorem evenz

Description: An even number is an integer. (Contributed by AV, 14-Jun-2020)

Ref Expression
Assertion evenz
|- ( Z e. Even -> Z e. ZZ )

Proof

Step Hyp Ref Expression
1 iseven
 |-  ( Z e. Even <-> ( Z e. ZZ /\ ( Z / 2 ) e. ZZ ) )
2 1 simplbi
 |-  ( Z e. Even -> Z e. ZZ )