Metamath Proof Explorer


Theorem evl1addd

Description: Polynomial evaluation builder for addition of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1addd.q
|- O = ( eval1 ` R )
evl1addd.p
|- P = ( Poly1 ` R )
evl1addd.b
|- B = ( Base ` R )
evl1addd.u
|- U = ( Base ` P )
evl1addd.1
|- ( ph -> R e. CRing )
evl1addd.2
|- ( ph -> Y e. B )
evl1addd.3
|- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) )
evl1addd.4
|- ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) )
evl1addd.g
|- .+b = ( +g ` P )
evl1addd.a
|- .+ = ( +g ` R )
Assertion evl1addd
|- ( ph -> ( ( M .+b N ) e. U /\ ( ( O ` ( M .+b N ) ) ` Y ) = ( V .+ W ) ) )

Proof

Step Hyp Ref Expression
1 evl1addd.q
 |-  O = ( eval1 ` R )
2 evl1addd.p
 |-  P = ( Poly1 ` R )
3 evl1addd.b
 |-  B = ( Base ` R )
4 evl1addd.u
 |-  U = ( Base ` P )
5 evl1addd.1
 |-  ( ph -> R e. CRing )
6 evl1addd.2
 |-  ( ph -> Y e. B )
7 evl1addd.3
 |-  ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) )
8 evl1addd.4
 |-  ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) )
9 evl1addd.g
 |-  .+b = ( +g ` P )
10 evl1addd.a
 |-  .+ = ( +g ` R )
11 eqid
 |-  ( R ^s B ) = ( R ^s B )
12 1 2 11 3 evl1rhm
 |-  ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) )
13 5 12 syl
 |-  ( ph -> O e. ( P RingHom ( R ^s B ) ) )
14 rhmghm
 |-  ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( P GrpHom ( R ^s B ) ) )
15 13 14 syl
 |-  ( ph -> O e. ( P GrpHom ( R ^s B ) ) )
16 ghmgrp1
 |-  ( O e. ( P GrpHom ( R ^s B ) ) -> P e. Grp )
17 15 16 syl
 |-  ( ph -> P e. Grp )
18 7 simpld
 |-  ( ph -> M e. U )
19 8 simpld
 |-  ( ph -> N e. U )
20 4 9 grpcl
 |-  ( ( P e. Grp /\ M e. U /\ N e. U ) -> ( M .+b N ) e. U )
21 17 18 19 20 syl3anc
 |-  ( ph -> ( M .+b N ) e. U )
22 eqid
 |-  ( +g ` ( R ^s B ) ) = ( +g ` ( R ^s B ) )
23 4 9 22 ghmlin
 |-  ( ( O e. ( P GrpHom ( R ^s B ) ) /\ M e. U /\ N e. U ) -> ( O ` ( M .+b N ) ) = ( ( O ` M ) ( +g ` ( R ^s B ) ) ( O ` N ) ) )
24 15 18 19 23 syl3anc
 |-  ( ph -> ( O ` ( M .+b N ) ) = ( ( O ` M ) ( +g ` ( R ^s B ) ) ( O ` N ) ) )
25 eqid
 |-  ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) )
26 3 fvexi
 |-  B e. _V
27 26 a1i
 |-  ( ph -> B e. _V )
28 4 25 rhmf
 |-  ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) )
29 13 28 syl
 |-  ( ph -> O : U --> ( Base ` ( R ^s B ) ) )
30 29 18 ffvelrnd
 |-  ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) )
31 29 19 ffvelrnd
 |-  ( ph -> ( O ` N ) e. ( Base ` ( R ^s B ) ) )
32 11 25 5 27 30 31 10 22 pwsplusgval
 |-  ( ph -> ( ( O ` M ) ( +g ` ( R ^s B ) ) ( O ` N ) ) = ( ( O ` M ) oF .+ ( O ` N ) ) )
33 24 32 eqtrd
 |-  ( ph -> ( O ` ( M .+b N ) ) = ( ( O ` M ) oF .+ ( O ` N ) ) )
34 33 fveq1d
 |-  ( ph -> ( ( O ` ( M .+b N ) ) ` Y ) = ( ( ( O ` M ) oF .+ ( O ` N ) ) ` Y ) )
35 11 3 25 5 27 30 pwselbas
 |-  ( ph -> ( O ` M ) : B --> B )
36 35 ffnd
 |-  ( ph -> ( O ` M ) Fn B )
37 11 3 25 5 27 31 pwselbas
 |-  ( ph -> ( O ` N ) : B --> B )
38 37 ffnd
 |-  ( ph -> ( O ` N ) Fn B )
39 fnfvof
 |-  ( ( ( ( O ` M ) Fn B /\ ( O ` N ) Fn B ) /\ ( B e. _V /\ Y e. B ) ) -> ( ( ( O ` M ) oF .+ ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) .+ ( ( O ` N ) ` Y ) ) )
40 36 38 27 6 39 syl22anc
 |-  ( ph -> ( ( ( O ` M ) oF .+ ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) .+ ( ( O ` N ) ` Y ) ) )
41 7 simprd
 |-  ( ph -> ( ( O ` M ) ` Y ) = V )
42 8 simprd
 |-  ( ph -> ( ( O ` N ) ` Y ) = W )
43 41 42 oveq12d
 |-  ( ph -> ( ( ( O ` M ) ` Y ) .+ ( ( O ` N ) ` Y ) ) = ( V .+ W ) )
44 34 40 43 3eqtrd
 |-  ( ph -> ( ( O ` ( M .+b N ) ) ` Y ) = ( V .+ W ) )
45 21 44 jca
 |-  ( ph -> ( ( M .+b N ) e. U /\ ( ( O ` ( M .+b N ) ) ` Y ) = ( V .+ W ) ) )