| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1addd.q |  |-  O = ( eval1 ` R ) | 
						
							| 2 |  | evl1addd.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | evl1addd.b |  |-  B = ( Base ` R ) | 
						
							| 4 |  | evl1addd.u |  |-  U = ( Base ` P ) | 
						
							| 5 |  | evl1addd.1 |  |-  ( ph -> R e. CRing ) | 
						
							| 6 |  | evl1addd.2 |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | evl1addd.3 |  |-  ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) | 
						
							| 8 |  | evl1expd.f |  |-  .xb = ( .g ` ( mulGrp ` P ) ) | 
						
							| 9 |  | evl1expd.e |  |-  .^ = ( .g ` ( mulGrp ` R ) ) | 
						
							| 10 |  | evl1expd.4 |  |-  ( ph -> N e. NN0 ) | 
						
							| 11 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 12 | 11 4 | mgpbas |  |-  U = ( Base ` ( mulGrp ` P ) ) | 
						
							| 13 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 14 | 5 13 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 15 | 2 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 16 | 11 | ringmgp |  |-  ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 17 | 14 15 16 | 3syl |  |-  ( ph -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 18 | 7 | simpld |  |-  ( ph -> M e. U ) | 
						
							| 19 | 12 8 17 10 18 | mulgnn0cld |  |-  ( ph -> ( N .xb M ) e. U ) | 
						
							| 20 |  | eqid |  |-  ( R ^s B ) = ( R ^s B ) | 
						
							| 21 | 1 2 20 3 | evl1rhm |  |-  ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) | 
						
							| 22 | 5 21 | syl |  |-  ( ph -> O e. ( P RingHom ( R ^s B ) ) ) | 
						
							| 23 |  | eqid |  |-  ( mulGrp ` ( R ^s B ) ) = ( mulGrp ` ( R ^s B ) ) | 
						
							| 24 | 11 23 | rhmmhm |  |-  ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) | 
						
							| 25 | 22 24 | syl |  |-  ( ph -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) | 
						
							| 26 |  | eqid |  |-  ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( mulGrp ` ( R ^s B ) ) ) | 
						
							| 27 | 12 8 26 | mhmmulg |  |-  ( ( O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) /\ N e. NN0 /\ M e. U ) -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) | 
						
							| 28 | 25 10 18 27 | syl3anc |  |-  ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) | 
						
							| 29 |  | eqid |  |-  ( .g ` ( ( mulGrp ` R ) ^s B ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) | 
						
							| 30 |  | eqidd |  |-  ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) ) | 
						
							| 31 | 3 | fvexi |  |-  B e. _V | 
						
							| 32 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 33 |  | eqid |  |-  ( ( mulGrp ` R ) ^s B ) = ( ( mulGrp ` R ) ^s B ) | 
						
							| 34 |  | eqid |  |-  ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) | 
						
							| 35 |  | eqid |  |-  ( Base ` ( ( mulGrp ` R ) ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) | 
						
							| 36 |  | eqid |  |-  ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( mulGrp ` ( R ^s B ) ) ) | 
						
							| 37 |  | eqid |  |-  ( +g ` ( ( mulGrp ` R ) ^s B ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) | 
						
							| 38 | 20 32 33 23 34 35 36 37 | pwsmgp |  |-  ( ( R e. CRing /\ B e. _V ) -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) | 
						
							| 39 | 5 31 38 | sylancl |  |-  ( ph -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) | 
						
							| 40 | 39 | simpld |  |-  ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 41 |  | ssv |  |-  ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V | 
						
							| 42 | 41 | a1i |  |-  ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V ) | 
						
							| 43 |  | ovexd |  |-  ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) e. _V ) | 
						
							| 44 | 39 | simprd |  |-  ( ph -> ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 45 | 44 | oveqdr |  |-  ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s B ) ) y ) ) | 
						
							| 46 | 26 29 30 40 42 43 45 | mulgpropd |  |-  ( ph -> ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 47 | 46 | oveqd |  |-  ( ph -> ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) | 
						
							| 48 | 28 47 | eqtrd |  |-  ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) | 
						
							| 49 | 48 | fveq1d |  |-  ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) ) | 
						
							| 50 | 32 | ringmgp |  |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 51 | 14 50 | syl |  |-  ( ph -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 52 | 31 | a1i |  |-  ( ph -> B e. _V ) | 
						
							| 53 |  | eqid |  |-  ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) | 
						
							| 54 | 4 53 | rhmf |  |-  ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) | 
						
							| 55 | 22 54 | syl |  |-  ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) | 
						
							| 56 | 55 18 | ffvelcdmd |  |-  ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) | 
						
							| 57 | 23 53 | mgpbas |  |-  ( Base ` ( R ^s B ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) | 
						
							| 58 | 57 40 | eqtrid |  |-  ( ph -> ( Base ` ( R ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 59 | 56 58 | eleqtrd |  |-  ( ph -> ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) | 
						
							| 60 | 33 35 29 9 | pwsmulg |  |-  ( ( ( ( mulGrp ` R ) e. Mnd /\ B e. _V ) /\ ( N e. NN0 /\ ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ Y e. B ) ) -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) | 
						
							| 61 | 51 52 10 59 6 60 | syl23anc |  |-  ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) | 
						
							| 62 | 7 | simprd |  |-  ( ph -> ( ( O ` M ) ` Y ) = V ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ph -> ( N .^ ( ( O ` M ) ` Y ) ) = ( N .^ V ) ) | 
						
							| 64 | 61 63 | eqtrd |  |-  ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ V ) ) | 
						
							| 65 | 49 64 | eqtrd |  |-  ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) | 
						
							| 66 | 19 65 | jca |  |-  ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) ) |