Step |
Hyp |
Ref |
Expression |
1 |
|
evl1addd.q |
|- O = ( eval1 ` R ) |
2 |
|
evl1addd.p |
|- P = ( Poly1 ` R ) |
3 |
|
evl1addd.b |
|- B = ( Base ` R ) |
4 |
|
evl1addd.u |
|- U = ( Base ` P ) |
5 |
|
evl1addd.1 |
|- ( ph -> R e. CRing ) |
6 |
|
evl1addd.2 |
|- ( ph -> Y e. B ) |
7 |
|
evl1addd.3 |
|- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
8 |
|
evl1expd.f |
|- .xb = ( .g ` ( mulGrp ` P ) ) |
9 |
|
evl1expd.e |
|- .^ = ( .g ` ( mulGrp ` R ) ) |
10 |
|
evl1expd.4 |
|- ( ph -> N e. NN0 ) |
11 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
12 |
5 11
|
syl |
|- ( ph -> R e. Ring ) |
13 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
14 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
15 |
14
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
16 |
12 13 15
|
3syl |
|- ( ph -> ( mulGrp ` P ) e. Mnd ) |
17 |
7
|
simpld |
|- ( ph -> M e. U ) |
18 |
14 4
|
mgpbas |
|- U = ( Base ` ( mulGrp ` P ) ) |
19 |
18 8
|
mulgnn0cl |
|- ( ( ( mulGrp ` P ) e. Mnd /\ N e. NN0 /\ M e. U ) -> ( N .xb M ) e. U ) |
20 |
16 10 17 19
|
syl3anc |
|- ( ph -> ( N .xb M ) e. U ) |
21 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
22 |
1 2 21 3
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
23 |
5 22
|
syl |
|- ( ph -> O e. ( P RingHom ( R ^s B ) ) ) |
24 |
|
eqid |
|- ( mulGrp ` ( R ^s B ) ) = ( mulGrp ` ( R ^s B ) ) |
25 |
14 24
|
rhmmhm |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) |
26 |
23 25
|
syl |
|- ( ph -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) |
27 |
|
eqid |
|- ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( mulGrp ` ( R ^s B ) ) ) |
28 |
18 8 27
|
mhmmulg |
|- ( ( O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) /\ N e. NN0 /\ M e. U ) -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) |
29 |
26 10 17 28
|
syl3anc |
|- ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) |
30 |
|
eqid |
|- ( .g ` ( ( mulGrp ` R ) ^s B ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) |
31 |
|
eqidd |
|- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) ) |
32 |
3
|
fvexi |
|- B e. _V |
33 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
34 |
|
eqid |
|- ( ( mulGrp ` R ) ^s B ) = ( ( mulGrp ` R ) ^s B ) |
35 |
|
eqid |
|- ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) |
36 |
|
eqid |
|- ( Base ` ( ( mulGrp ` R ) ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) |
37 |
|
eqid |
|- ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( mulGrp ` ( R ^s B ) ) ) |
38 |
|
eqid |
|- ( +g ` ( ( mulGrp ` R ) ^s B ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) |
39 |
21 33 34 24 35 36 37 38
|
pwsmgp |
|- ( ( R e. CRing /\ B e. _V ) -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
40 |
5 32 39
|
sylancl |
|- ( ph -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
41 |
40
|
simpld |
|- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
42 |
|
ssv |
|- ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V |
43 |
42
|
a1i |
|- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V ) |
44 |
|
ovexd |
|- ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) e. _V ) |
45 |
40
|
simprd |
|- ( ph -> ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) |
46 |
45
|
oveqdr |
|- ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s B ) ) y ) ) |
47 |
27 30 31 41 43 44 46
|
mulgpropd |
|- ( ph -> ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) ) |
48 |
47
|
oveqd |
|- ( ph -> ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) |
49 |
29 48
|
eqtrd |
|- ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) |
50 |
49
|
fveq1d |
|- ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) ) |
51 |
33
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
52 |
12 51
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
53 |
32
|
a1i |
|- ( ph -> B e. _V ) |
54 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
55 |
4 54
|
rhmf |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
56 |
23 55
|
syl |
|- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
57 |
56 17
|
ffvelrnd |
|- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
58 |
24 54
|
mgpbas |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) |
59 |
58 41
|
syl5eq |
|- ( ph -> ( Base ` ( R ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
60 |
57 59
|
eleqtrd |
|- ( ph -> ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
61 |
34 36 30 9
|
pwsmulg |
|- ( ( ( ( mulGrp ` R ) e. Mnd /\ B e. _V ) /\ ( N e. NN0 /\ ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ Y e. B ) ) -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) |
62 |
52 53 10 60 6 61
|
syl23anc |
|- ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) |
63 |
7
|
simprd |
|- ( ph -> ( ( O ` M ) ` Y ) = V ) |
64 |
63
|
oveq2d |
|- ( ph -> ( N .^ ( ( O ` M ) ` Y ) ) = ( N .^ V ) ) |
65 |
62 64
|
eqtrd |
|- ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ V ) ) |
66 |
50 65
|
eqtrd |
|- ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) |
67 |
20 66
|
jca |
|- ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) ) |