Metamath Proof Explorer


Theorem evl1gsumaddval

Description: Value of a univariate polynomial evaluation mapping an additive group sum to a group sum of the evaluated variable. (Contributed by AV, 17-Sep-2019)

Ref Expression
Hypotheses evl1gsumadd.q
|- Q = ( eval1 ` R )
evl1gsumadd.k
|- K = ( Base ` R )
evl1gsumadd.w
|- W = ( Poly1 ` R )
evl1gsumadd.p
|- P = ( R ^s K )
evl1gsumadd.b
|- B = ( Base ` W )
evl1gsumadd.r
|- ( ph -> R e. CRing )
evl1gsumadd.y
|- ( ( ph /\ x e. N ) -> Y e. B )
evl1gsumadd.n
|- ( ph -> N C_ NN0 )
evl1gsumaddval.f
|- ( ph -> N e. Fin )
evl1gsumaddval.c
|- ( ph -> C e. K )
Assertion evl1gsumaddval
|- ( ph -> ( ( Q ` ( W gsum ( x e. N |-> Y ) ) ) ` C ) = ( R gsum ( x e. N |-> ( ( Q ` Y ) ` C ) ) ) )

Proof

Step Hyp Ref Expression
1 evl1gsumadd.q
 |-  Q = ( eval1 ` R )
2 evl1gsumadd.k
 |-  K = ( Base ` R )
3 evl1gsumadd.w
 |-  W = ( Poly1 ` R )
4 evl1gsumadd.p
 |-  P = ( R ^s K )
5 evl1gsumadd.b
 |-  B = ( Base ` W )
6 evl1gsumadd.r
 |-  ( ph -> R e. CRing )
7 evl1gsumadd.y
 |-  ( ( ph /\ x e. N ) -> Y e. B )
8 evl1gsumadd.n
 |-  ( ph -> N C_ NN0 )
9 evl1gsumaddval.f
 |-  ( ph -> N e. Fin )
10 evl1gsumaddval.c
 |-  ( ph -> C e. K )
11 7 ralrimiva
 |-  ( ph -> A. x e. N Y e. B )
12 1 3 2 5 6 10 11 9 evl1gsumd
 |-  ( ph -> ( ( Q ` ( W gsum ( x e. N |-> Y ) ) ) ` C ) = ( R gsum ( x e. N |-> ( ( Q ` Y ) ` C ) ) ) )