Description: Value of a univariate polynomial evaluation mapping an additive group sum to a group sum of the evaluated variable. (Contributed by AV, 17-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evl1gsumadd.q | |- Q = ( eval1 ` R ) |
|
evl1gsumadd.k | |- K = ( Base ` R ) |
||
evl1gsumadd.w | |- W = ( Poly1 ` R ) |
||
evl1gsumadd.p | |- P = ( R ^s K ) |
||
evl1gsumadd.b | |- B = ( Base ` W ) |
||
evl1gsumadd.r | |- ( ph -> R e. CRing ) |
||
evl1gsumadd.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
||
evl1gsumadd.n | |- ( ph -> N C_ NN0 ) |
||
evl1gsumaddval.f | |- ( ph -> N e. Fin ) |
||
evl1gsumaddval.c | |- ( ph -> C e. K ) |
||
Assertion | evl1gsumaddval | |- ( ph -> ( ( Q ` ( W gsum ( x e. N |-> Y ) ) ) ` C ) = ( R gsum ( x e. N |-> ( ( Q ` Y ) ` C ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsumadd.q | |- Q = ( eval1 ` R ) |
|
2 | evl1gsumadd.k | |- K = ( Base ` R ) |
|
3 | evl1gsumadd.w | |- W = ( Poly1 ` R ) |
|
4 | evl1gsumadd.p | |- P = ( R ^s K ) |
|
5 | evl1gsumadd.b | |- B = ( Base ` W ) |
|
6 | evl1gsumadd.r | |- ( ph -> R e. CRing ) |
|
7 | evl1gsumadd.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
|
8 | evl1gsumadd.n | |- ( ph -> N C_ NN0 ) |
|
9 | evl1gsumaddval.f | |- ( ph -> N e. Fin ) |
|
10 | evl1gsumaddval.c | |- ( ph -> C e. K ) |
|
11 | 7 | ralrimiva | |- ( ph -> A. x e. N Y e. B ) |
12 | 1 3 2 5 6 10 11 9 | evl1gsumd | |- ( ph -> ( ( Q ` ( W gsum ( x e. N |-> Y ) ) ) ` C ) = ( R gsum ( x e. N |-> ( ( Q ` Y ) ` C ) ) ) ) |