Step |
Hyp |
Ref |
Expression |
1 |
|
evl1addd.q |
|- O = ( eval1 ` R ) |
2 |
|
evl1addd.p |
|- P = ( Poly1 ` R ) |
3 |
|
evl1addd.b |
|- B = ( Base ` R ) |
4 |
|
evl1addd.u |
|- U = ( Base ` P ) |
5 |
|
evl1addd.1 |
|- ( ph -> R e. CRing ) |
6 |
|
evl1addd.2 |
|- ( ph -> Y e. B ) |
7 |
|
evl1addd.3 |
|- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
8 |
|
evl1addd.4 |
|- ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) ) |
9 |
|
evl1muld.t |
|- .xb = ( .r ` P ) |
10 |
|
evl1muld.s |
|- .x. = ( .r ` R ) |
11 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
12 |
1 2 11 3
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
13 |
5 12
|
syl |
|- ( ph -> O e. ( P RingHom ( R ^s B ) ) ) |
14 |
|
rhmrcl1 |
|- ( O e. ( P RingHom ( R ^s B ) ) -> P e. Ring ) |
15 |
13 14
|
syl |
|- ( ph -> P e. Ring ) |
16 |
7
|
simpld |
|- ( ph -> M e. U ) |
17 |
8
|
simpld |
|- ( ph -> N e. U ) |
18 |
4 9
|
ringcl |
|- ( ( P e. Ring /\ M e. U /\ N e. U ) -> ( M .xb N ) e. U ) |
19 |
15 16 17 18
|
syl3anc |
|- ( ph -> ( M .xb N ) e. U ) |
20 |
|
eqid |
|- ( .r ` ( R ^s B ) ) = ( .r ` ( R ^s B ) ) |
21 |
4 9 20
|
rhmmul |
|- ( ( O e. ( P RingHom ( R ^s B ) ) /\ M e. U /\ N e. U ) -> ( O ` ( M .xb N ) ) = ( ( O ` M ) ( .r ` ( R ^s B ) ) ( O ` N ) ) ) |
22 |
13 16 17 21
|
syl3anc |
|- ( ph -> ( O ` ( M .xb N ) ) = ( ( O ` M ) ( .r ` ( R ^s B ) ) ( O ` N ) ) ) |
23 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
24 |
3
|
fvexi |
|- B e. _V |
25 |
24
|
a1i |
|- ( ph -> B e. _V ) |
26 |
4 23
|
rhmf |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
27 |
13 26
|
syl |
|- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
28 |
27 16
|
ffvelrnd |
|- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
29 |
27 17
|
ffvelrnd |
|- ( ph -> ( O ` N ) e. ( Base ` ( R ^s B ) ) ) |
30 |
11 23 5 25 28 29 10 20
|
pwsmulrval |
|- ( ph -> ( ( O ` M ) ( .r ` ( R ^s B ) ) ( O ` N ) ) = ( ( O ` M ) oF .x. ( O ` N ) ) ) |
31 |
22 30
|
eqtrd |
|- ( ph -> ( O ` ( M .xb N ) ) = ( ( O ` M ) oF .x. ( O ` N ) ) ) |
32 |
31
|
fveq1d |
|- ( ph -> ( ( O ` ( M .xb N ) ) ` Y ) = ( ( ( O ` M ) oF .x. ( O ` N ) ) ` Y ) ) |
33 |
11 3 23 5 25 28
|
pwselbas |
|- ( ph -> ( O ` M ) : B --> B ) |
34 |
33
|
ffnd |
|- ( ph -> ( O ` M ) Fn B ) |
35 |
11 3 23 5 25 29
|
pwselbas |
|- ( ph -> ( O ` N ) : B --> B ) |
36 |
35
|
ffnd |
|- ( ph -> ( O ` N ) Fn B ) |
37 |
|
fnfvof |
|- ( ( ( ( O ` M ) Fn B /\ ( O ` N ) Fn B ) /\ ( B e. _V /\ Y e. B ) ) -> ( ( ( O ` M ) oF .x. ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) .x. ( ( O ` N ) ` Y ) ) ) |
38 |
34 36 25 6 37
|
syl22anc |
|- ( ph -> ( ( ( O ` M ) oF .x. ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) .x. ( ( O ` N ) ` Y ) ) ) |
39 |
7
|
simprd |
|- ( ph -> ( ( O ` M ) ` Y ) = V ) |
40 |
8
|
simprd |
|- ( ph -> ( ( O ` N ) ` Y ) = W ) |
41 |
39 40
|
oveq12d |
|- ( ph -> ( ( ( O ` M ) ` Y ) .x. ( ( O ` N ) ` Y ) ) = ( V .x. W ) ) |
42 |
32 38 41
|
3eqtrd |
|- ( ph -> ( ( O ` ( M .xb N ) ) ` Y ) = ( V .x. W ) ) |
43 |
19 42
|
jca |
|- ( ph -> ( ( M .xb N ) e. U /\ ( ( O ` ( M .xb N ) ) ` Y ) = ( V .x. W ) ) ) |