| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1sca.o |  |-  O = ( eval1 ` R ) | 
						
							| 2 |  | evl1sca.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | evl1sca.b |  |-  B = ( Base ` R ) | 
						
							| 4 |  | evl1sca.a |  |-  A = ( algSc ` P ) | 
						
							| 5 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 6 | 5 | adantr |  |-  ( ( R e. CRing /\ X e. B ) -> R e. Ring ) | 
						
							| 7 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 8 | 2 4 3 7 | ply1sclf |  |-  ( R e. Ring -> A : B --> ( Base ` P ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( ( R e. CRing /\ X e. B ) -> A : B --> ( Base ` P ) ) | 
						
							| 10 |  | ffvelcdm |  |-  ( ( A : B --> ( Base ` P ) /\ X e. B ) -> ( A ` X ) e. ( Base ` P ) ) | 
						
							| 11 | 9 10 | sylancom |  |-  ( ( R e. CRing /\ X e. B ) -> ( A ` X ) e. ( Base ` P ) ) | 
						
							| 12 |  | eqid |  |-  ( 1o eval R ) = ( 1o eval R ) | 
						
							| 13 |  | eqid |  |-  ( 1o mPoly R ) = ( 1o mPoly R ) | 
						
							| 14 | 2 7 | ply1bas |  |-  ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) | 
						
							| 15 | 1 12 3 13 14 | evl1val |  |-  ( ( R e. CRing /\ ( A ` X ) e. ( Base ` P ) ) -> ( O ` ( A ` X ) ) = ( ( ( 1o eval R ) ` ( A ` X ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) | 
						
							| 16 | 11 15 | syldan |  |-  ( ( R e. CRing /\ X e. B ) -> ( O ` ( A ` X ) ) = ( ( ( 1o eval R ) ` ( A ` X ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) | 
						
							| 17 | 2 4 | ply1ascl |  |-  A = ( algSc ` ( 1o mPoly R ) ) | 
						
							| 18 | 3 | ressid |  |-  ( R e. CRing -> ( R |`s B ) = R ) | 
						
							| 19 | 18 | adantr |  |-  ( ( R e. CRing /\ X e. B ) -> ( R |`s B ) = R ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( R e. CRing /\ X e. B ) -> ( 1o mPoly ( R |`s B ) ) = ( 1o mPoly R ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( R e. CRing /\ X e. B ) -> ( algSc ` ( 1o mPoly ( R |`s B ) ) ) = ( algSc ` ( 1o mPoly R ) ) ) | 
						
							| 22 | 17 21 | eqtr4id |  |-  ( ( R e. CRing /\ X e. B ) -> A = ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ) | 
						
							| 23 | 22 | fveq1d |  |-  ( ( R e. CRing /\ X e. B ) -> ( A ` X ) = ( ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ` X ) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( ( R e. CRing /\ X e. B ) -> ( ( 1o eval R ) ` ( A ` X ) ) = ( ( 1o eval R ) ` ( ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ` X ) ) ) | 
						
							| 25 | 12 3 | evlval |  |-  ( 1o eval R ) = ( ( 1o evalSub R ) ` B ) | 
						
							| 26 |  | eqid |  |-  ( 1o mPoly ( R |`s B ) ) = ( 1o mPoly ( R |`s B ) ) | 
						
							| 27 |  | eqid |  |-  ( R |`s B ) = ( R |`s B ) | 
						
							| 28 |  | eqid |  |-  ( algSc ` ( 1o mPoly ( R |`s B ) ) ) = ( algSc ` ( 1o mPoly ( R |`s B ) ) ) | 
						
							| 29 |  | 1on |  |-  1o e. On | 
						
							| 30 | 29 | a1i |  |-  ( ( R e. CRing /\ X e. B ) -> 1o e. On ) | 
						
							| 31 |  | simpl |  |-  ( ( R e. CRing /\ X e. B ) -> R e. CRing ) | 
						
							| 32 | 3 | subrgid |  |-  ( R e. Ring -> B e. ( SubRing ` R ) ) | 
						
							| 33 | 6 32 | syl |  |-  ( ( R e. CRing /\ X e. B ) -> B e. ( SubRing ` R ) ) | 
						
							| 34 |  | simpr |  |-  ( ( R e. CRing /\ X e. B ) -> X e. B ) | 
						
							| 35 | 25 26 27 3 28 30 31 33 34 | evlssca |  |-  ( ( R e. CRing /\ X e. B ) -> ( ( 1o eval R ) ` ( ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ` X ) ) = ( ( B ^m 1o ) X. { X } ) ) | 
						
							| 36 | 24 35 | eqtrd |  |-  ( ( R e. CRing /\ X e. B ) -> ( ( 1o eval R ) ` ( A ` X ) ) = ( ( B ^m 1o ) X. { X } ) ) | 
						
							| 37 | 36 | coeq1d |  |-  ( ( R e. CRing /\ X e. B ) -> ( ( ( 1o eval R ) ` ( A ` X ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) | 
						
							| 38 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 39 | 3 | fvexi |  |-  B e. _V | 
						
							| 40 |  | 0ex |  |-  (/) e. _V | 
						
							| 41 |  | eqid |  |-  ( y e. B |-> ( 1o X. { y } ) ) = ( y e. B |-> ( 1o X. { y } ) ) | 
						
							| 42 | 38 39 40 41 | mapsnf1o3 |  |-  ( y e. B |-> ( 1o X. { y } ) ) : B -1-1-onto-> ( B ^m 1o ) | 
						
							| 43 |  | f1of |  |-  ( ( y e. B |-> ( 1o X. { y } ) ) : B -1-1-onto-> ( B ^m 1o ) -> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) | 
						
							| 44 | 42 43 | mp1i |  |-  ( ( R e. CRing /\ X e. B ) -> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) | 
						
							| 45 | 41 | fmpt |  |-  ( A. y e. B ( 1o X. { y } ) e. ( B ^m 1o ) <-> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) | 
						
							| 46 | 44 45 | sylibr |  |-  ( ( R e. CRing /\ X e. B ) -> A. y e. B ( 1o X. { y } ) e. ( B ^m 1o ) ) | 
						
							| 47 |  | eqidd |  |-  ( ( R e. CRing /\ X e. B ) -> ( y e. B |-> ( 1o X. { y } ) ) = ( y e. B |-> ( 1o X. { y } ) ) ) | 
						
							| 48 |  | fconstmpt |  |-  ( ( B ^m 1o ) X. { X } ) = ( x e. ( B ^m 1o ) |-> X ) | 
						
							| 49 | 48 | a1i |  |-  ( ( R e. CRing /\ X e. B ) -> ( ( B ^m 1o ) X. { X } ) = ( x e. ( B ^m 1o ) |-> X ) ) | 
						
							| 50 |  | eqidd |  |-  ( x = ( 1o X. { y } ) -> X = X ) | 
						
							| 51 | 46 47 49 50 | fmptcof |  |-  ( ( R e. CRing /\ X e. B ) -> ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( y e. B |-> X ) ) | 
						
							| 52 |  | fconstmpt |  |-  ( B X. { X } ) = ( y e. B |-> X ) | 
						
							| 53 | 51 52 | eqtr4di |  |-  ( ( R e. CRing /\ X e. B ) -> ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( B X. { X } ) ) | 
						
							| 54 | 16 37 53 | 3eqtrd |  |-  ( ( R e. CRing /\ X e. B ) -> ( O ` ( A ` X ) ) = ( B X. { X } ) ) |