Step |
Hyp |
Ref |
Expression |
1 |
|
evl1sca.o |
|- O = ( eval1 ` R ) |
2 |
|
evl1sca.p |
|- P = ( Poly1 ` R ) |
3 |
|
evl1sca.b |
|- B = ( Base ` R ) |
4 |
|
evl1sca.a |
|- A = ( algSc ` P ) |
5 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
6 |
5
|
adantr |
|- ( ( R e. CRing /\ X e. B ) -> R e. Ring ) |
7 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
8 |
2 4 3 7
|
ply1sclf |
|- ( R e. Ring -> A : B --> ( Base ` P ) ) |
9 |
6 8
|
syl |
|- ( ( R e. CRing /\ X e. B ) -> A : B --> ( Base ` P ) ) |
10 |
|
ffvelcdm |
|- ( ( A : B --> ( Base ` P ) /\ X e. B ) -> ( A ` X ) e. ( Base ` P ) ) |
11 |
9 10
|
sylancom |
|- ( ( R e. CRing /\ X e. B ) -> ( A ` X ) e. ( Base ` P ) ) |
12 |
|
eqid |
|- ( 1o eval R ) = ( 1o eval R ) |
13 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
14 |
2 7
|
ply1bas |
|- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
15 |
1 12 3 13 14
|
evl1val |
|- ( ( R e. CRing /\ ( A ` X ) e. ( Base ` P ) ) -> ( O ` ( A ` X ) ) = ( ( ( 1o eval R ) ` ( A ` X ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
16 |
11 15
|
syldan |
|- ( ( R e. CRing /\ X e. B ) -> ( O ` ( A ` X ) ) = ( ( ( 1o eval R ) ` ( A ` X ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
17 |
2 4
|
ply1ascl |
|- A = ( algSc ` ( 1o mPoly R ) ) |
18 |
3
|
ressid |
|- ( R e. CRing -> ( R |`s B ) = R ) |
19 |
18
|
adantr |
|- ( ( R e. CRing /\ X e. B ) -> ( R |`s B ) = R ) |
20 |
19
|
oveq2d |
|- ( ( R e. CRing /\ X e. B ) -> ( 1o mPoly ( R |`s B ) ) = ( 1o mPoly R ) ) |
21 |
20
|
fveq2d |
|- ( ( R e. CRing /\ X e. B ) -> ( algSc ` ( 1o mPoly ( R |`s B ) ) ) = ( algSc ` ( 1o mPoly R ) ) ) |
22 |
17 21
|
eqtr4id |
|- ( ( R e. CRing /\ X e. B ) -> A = ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ) |
23 |
22
|
fveq1d |
|- ( ( R e. CRing /\ X e. B ) -> ( A ` X ) = ( ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ` X ) ) |
24 |
23
|
fveq2d |
|- ( ( R e. CRing /\ X e. B ) -> ( ( 1o eval R ) ` ( A ` X ) ) = ( ( 1o eval R ) ` ( ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ` X ) ) ) |
25 |
12 3
|
evlval |
|- ( 1o eval R ) = ( ( 1o evalSub R ) ` B ) |
26 |
|
eqid |
|- ( 1o mPoly ( R |`s B ) ) = ( 1o mPoly ( R |`s B ) ) |
27 |
|
eqid |
|- ( R |`s B ) = ( R |`s B ) |
28 |
|
eqid |
|- ( algSc ` ( 1o mPoly ( R |`s B ) ) ) = ( algSc ` ( 1o mPoly ( R |`s B ) ) ) |
29 |
|
1on |
|- 1o e. On |
30 |
29
|
a1i |
|- ( ( R e. CRing /\ X e. B ) -> 1o e. On ) |
31 |
|
simpl |
|- ( ( R e. CRing /\ X e. B ) -> R e. CRing ) |
32 |
3
|
subrgid |
|- ( R e. Ring -> B e. ( SubRing ` R ) ) |
33 |
6 32
|
syl |
|- ( ( R e. CRing /\ X e. B ) -> B e. ( SubRing ` R ) ) |
34 |
|
simpr |
|- ( ( R e. CRing /\ X e. B ) -> X e. B ) |
35 |
25 26 27 3 28 30 31 33 34
|
evlssca |
|- ( ( R e. CRing /\ X e. B ) -> ( ( 1o eval R ) ` ( ( algSc ` ( 1o mPoly ( R |`s B ) ) ) ` X ) ) = ( ( B ^m 1o ) X. { X } ) ) |
36 |
24 35
|
eqtrd |
|- ( ( R e. CRing /\ X e. B ) -> ( ( 1o eval R ) ` ( A ` X ) ) = ( ( B ^m 1o ) X. { X } ) ) |
37 |
36
|
coeq1d |
|- ( ( R e. CRing /\ X e. B ) -> ( ( ( 1o eval R ) ` ( A ` X ) ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
38 |
|
df1o2 |
|- 1o = { (/) } |
39 |
3
|
fvexi |
|- B e. _V |
40 |
|
0ex |
|- (/) e. _V |
41 |
|
eqid |
|- ( y e. B |-> ( 1o X. { y } ) ) = ( y e. B |-> ( 1o X. { y } ) ) |
42 |
38 39 40 41
|
mapsnf1o3 |
|- ( y e. B |-> ( 1o X. { y } ) ) : B -1-1-onto-> ( B ^m 1o ) |
43 |
|
f1of |
|- ( ( y e. B |-> ( 1o X. { y } ) ) : B -1-1-onto-> ( B ^m 1o ) -> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) |
44 |
42 43
|
mp1i |
|- ( ( R e. CRing /\ X e. B ) -> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) |
45 |
41
|
fmpt |
|- ( A. y e. B ( 1o X. { y } ) e. ( B ^m 1o ) <-> ( y e. B |-> ( 1o X. { y } ) ) : B --> ( B ^m 1o ) ) |
46 |
44 45
|
sylibr |
|- ( ( R e. CRing /\ X e. B ) -> A. y e. B ( 1o X. { y } ) e. ( B ^m 1o ) ) |
47 |
|
eqidd |
|- ( ( R e. CRing /\ X e. B ) -> ( y e. B |-> ( 1o X. { y } ) ) = ( y e. B |-> ( 1o X. { y } ) ) ) |
48 |
|
fconstmpt |
|- ( ( B ^m 1o ) X. { X } ) = ( x e. ( B ^m 1o ) |-> X ) |
49 |
48
|
a1i |
|- ( ( R e. CRing /\ X e. B ) -> ( ( B ^m 1o ) X. { X } ) = ( x e. ( B ^m 1o ) |-> X ) ) |
50 |
|
eqidd |
|- ( x = ( 1o X. { y } ) -> X = X ) |
51 |
46 47 49 50
|
fmptcof |
|- ( ( R e. CRing /\ X e. B ) -> ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( y e. B |-> X ) ) |
52 |
|
fconstmpt |
|- ( B X. { X } ) = ( y e. B |-> X ) |
53 |
51 52
|
eqtr4di |
|- ( ( R e. CRing /\ X e. B ) -> ( ( ( B ^m 1o ) X. { X } ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( B X. { X } ) ) |
54 |
16 37 53
|
3eqtrd |
|- ( ( R e. CRing /\ X e. B ) -> ( O ` ( A ` X ) ) = ( B X. { X } ) ) |