Metamath Proof Explorer


Theorem evl1scad

Description: Polynomial evaluation builder for scalars. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1sca.o
|- O = ( eval1 ` R )
evl1sca.p
|- P = ( Poly1 ` R )
evl1sca.b
|- B = ( Base ` R )
evl1sca.a
|- A = ( algSc ` P )
evl1scad.u
|- U = ( Base ` P )
evl1scad.1
|- ( ph -> R e. CRing )
evl1scad.2
|- ( ph -> X e. B )
evl1scad.3
|- ( ph -> Y e. B )
Assertion evl1scad
|- ( ph -> ( ( A ` X ) e. U /\ ( ( O ` ( A ` X ) ) ` Y ) = X ) )

Proof

Step Hyp Ref Expression
1 evl1sca.o
 |-  O = ( eval1 ` R )
2 evl1sca.p
 |-  P = ( Poly1 ` R )
3 evl1sca.b
 |-  B = ( Base ` R )
4 evl1sca.a
 |-  A = ( algSc ` P )
5 evl1scad.u
 |-  U = ( Base ` P )
6 evl1scad.1
 |-  ( ph -> R e. CRing )
7 evl1scad.2
 |-  ( ph -> X e. B )
8 evl1scad.3
 |-  ( ph -> Y e. B )
9 crngring
 |-  ( R e. CRing -> R e. Ring )
10 2 4 3 5 ply1sclf
 |-  ( R e. Ring -> A : B --> U )
11 6 9 10 3syl
 |-  ( ph -> A : B --> U )
12 11 7 ffvelrnd
 |-  ( ph -> ( A ` X ) e. U )
13 1 2 3 4 evl1sca
 |-  ( ( R e. CRing /\ X e. B ) -> ( O ` ( A ` X ) ) = ( B X. { X } ) )
14 6 7 13 syl2anc
 |-  ( ph -> ( O ` ( A ` X ) ) = ( B X. { X } ) )
15 14 fveq1d
 |-  ( ph -> ( ( O ` ( A ` X ) ) ` Y ) = ( ( B X. { X } ) ` Y ) )
16 fvconst2g
 |-  ( ( X e. B /\ Y e. B ) -> ( ( B X. { X } ) ` Y ) = X )
17 7 8 16 syl2anc
 |-  ( ph -> ( ( B X. { X } ) ` Y ) = X )
18 15 17 eqtrd
 |-  ( ph -> ( ( O ` ( A ` X ) ) ` Y ) = X )
19 12 18 jca
 |-  ( ph -> ( ( A ` X ) e. U /\ ( ( O ` ( A ` X ) ) ` Y ) = X ) )