Step |
Hyp |
Ref |
Expression |
1 |
|
evl1varpw.q |
|- Q = ( eval1 ` R ) |
2 |
|
evl1varpw.w |
|- W = ( Poly1 ` R ) |
3 |
|
evl1varpw.g |
|- G = ( mulGrp ` W ) |
4 |
|
evl1varpw.x |
|- X = ( var1 ` R ) |
5 |
|
evl1varpw.b |
|- B = ( Base ` R ) |
6 |
|
evl1varpw.e |
|- .^ = ( .g ` G ) |
7 |
|
evl1varpw.r |
|- ( ph -> R e. CRing ) |
8 |
|
evl1varpw.n |
|- ( ph -> N e. NN0 ) |
9 |
|
evl1scvarpw.t1 |
|- .X. = ( .s ` W ) |
10 |
|
evl1scvarpw.a |
|- ( ph -> A e. B ) |
11 |
|
evl1scvarpw.s |
|- S = ( R ^s B ) |
12 |
|
evl1scvarpw.t2 |
|- .xb = ( .r ` S ) |
13 |
|
evl1scvarpw.m |
|- M = ( mulGrp ` S ) |
14 |
|
evl1scvarpw.f |
|- F = ( .g ` M ) |
15 |
2
|
ply1assa |
|- ( R e. CRing -> W e. AssAlg ) |
16 |
7 15
|
syl |
|- ( ph -> W e. AssAlg ) |
17 |
10 5
|
eleqtrdi |
|- ( ph -> A e. ( Base ` R ) ) |
18 |
2
|
ply1sca |
|- ( R e. CRing -> R = ( Scalar ` W ) ) |
19 |
18
|
eqcomd |
|- ( R e. CRing -> ( Scalar ` W ) = R ) |
20 |
7 19
|
syl |
|- ( ph -> ( Scalar ` W ) = R ) |
21 |
20
|
fveq2d |
|- ( ph -> ( Base ` ( Scalar ` W ) ) = ( Base ` R ) ) |
22 |
17 21
|
eleqtrrd |
|- ( ph -> A e. ( Base ` ( Scalar ` W ) ) ) |
23 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
24 |
7 23
|
syl |
|- ( ph -> R e. Ring ) |
25 |
2
|
ply1ring |
|- ( R e. Ring -> W e. Ring ) |
26 |
24 25
|
syl |
|- ( ph -> W e. Ring ) |
27 |
3
|
ringmgp |
|- ( W e. Ring -> G e. Mnd ) |
28 |
26 27
|
syl |
|- ( ph -> G e. Mnd ) |
29 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
30 |
4 2 29
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` W ) ) |
31 |
24 30
|
syl |
|- ( ph -> X e. ( Base ` W ) ) |
32 |
3 29
|
mgpbas |
|- ( Base ` W ) = ( Base ` G ) |
33 |
32 6
|
mulgnn0cl |
|- ( ( G e. Mnd /\ N e. NN0 /\ X e. ( Base ` W ) ) -> ( N .^ X ) e. ( Base ` W ) ) |
34 |
28 8 31 33
|
syl3anc |
|- ( ph -> ( N .^ X ) e. ( Base ` W ) ) |
35 |
|
eqid |
|- ( algSc ` W ) = ( algSc ` W ) |
36 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
37 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
38 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
39 |
35 36 37 29 38 9
|
asclmul1 |
|- ( ( W e. AssAlg /\ A e. ( Base ` ( Scalar ` W ) ) /\ ( N .^ X ) e. ( Base ` W ) ) -> ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) = ( A .X. ( N .^ X ) ) ) |
40 |
16 22 34 39
|
syl3anc |
|- ( ph -> ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) = ( A .X. ( N .^ X ) ) ) |
41 |
40
|
eqcomd |
|- ( ph -> ( A .X. ( N .^ X ) ) = ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) ) |
42 |
41
|
fveq2d |
|- ( ph -> ( Q ` ( A .X. ( N .^ X ) ) ) = ( Q ` ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) ) ) |
43 |
1 2 11 5
|
evl1rhm |
|- ( R e. CRing -> Q e. ( W RingHom S ) ) |
44 |
7 43
|
syl |
|- ( ph -> Q e. ( W RingHom S ) ) |
45 |
2
|
ply1lmod |
|- ( R e. Ring -> W e. LMod ) |
46 |
24 45
|
syl |
|- ( ph -> W e. LMod ) |
47 |
35 36 26 46 37 29
|
asclf |
|- ( ph -> ( algSc ` W ) : ( Base ` ( Scalar ` W ) ) --> ( Base ` W ) ) |
48 |
47 22
|
ffvelrnd |
|- ( ph -> ( ( algSc ` W ) ` A ) e. ( Base ` W ) ) |
49 |
29 38 12
|
rhmmul |
|- ( ( Q e. ( W RingHom S ) /\ ( ( algSc ` W ) ` A ) e. ( Base ` W ) /\ ( N .^ X ) e. ( Base ` W ) ) -> ( Q ` ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) ) = ( ( Q ` ( ( algSc ` W ) ` A ) ) .xb ( Q ` ( N .^ X ) ) ) ) |
50 |
44 48 34 49
|
syl3anc |
|- ( ph -> ( Q ` ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) ) = ( ( Q ` ( ( algSc ` W ) ` A ) ) .xb ( Q ` ( N .^ X ) ) ) ) |
51 |
1 2 5 35
|
evl1sca |
|- ( ( R e. CRing /\ A e. B ) -> ( Q ` ( ( algSc ` W ) ` A ) ) = ( B X. { A } ) ) |
52 |
7 10 51
|
syl2anc |
|- ( ph -> ( Q ` ( ( algSc ` W ) ` A ) ) = ( B X. { A } ) ) |
53 |
1 2 3 4 5 6 7 8
|
evl1varpw |
|- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( Q ` X ) ) ) |
54 |
11
|
fveq2i |
|- ( mulGrp ` S ) = ( mulGrp ` ( R ^s B ) ) |
55 |
13 54
|
eqtri |
|- M = ( mulGrp ` ( R ^s B ) ) |
56 |
55
|
fveq2i |
|- ( .g ` M ) = ( .g ` ( mulGrp ` ( R ^s B ) ) ) |
57 |
14 56
|
eqtri |
|- F = ( .g ` ( mulGrp ` ( R ^s B ) ) ) |
58 |
57
|
a1i |
|- ( ph -> F = ( .g ` ( mulGrp ` ( R ^s B ) ) ) ) |
59 |
58
|
eqcomd |
|- ( ph -> ( .g ` ( mulGrp ` ( R ^s B ) ) ) = F ) |
60 |
59
|
oveqd |
|- ( ph -> ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( Q ` X ) ) = ( N F ( Q ` X ) ) ) |
61 |
53 60
|
eqtrd |
|- ( ph -> ( Q ` ( N .^ X ) ) = ( N F ( Q ` X ) ) ) |
62 |
52 61
|
oveq12d |
|- ( ph -> ( ( Q ` ( ( algSc ` W ) ` A ) ) .xb ( Q ` ( N .^ X ) ) ) = ( ( B X. { A } ) .xb ( N F ( Q ` X ) ) ) ) |
63 |
42 50 62
|
3eqtrd |
|- ( ph -> ( Q ` ( A .X. ( N .^ X ) ) ) = ( ( B X. { A } ) .xb ( N F ( Q ` X ) ) ) ) |