Step |
Hyp |
Ref |
Expression |
1 |
|
evl1varpw.q |
|- Q = ( eval1 ` R ) |
2 |
|
evl1varpw.w |
|- W = ( Poly1 ` R ) |
3 |
|
evl1varpw.g |
|- G = ( mulGrp ` W ) |
4 |
|
evl1varpw.x |
|- X = ( var1 ` R ) |
5 |
|
evl1varpw.b |
|- B = ( Base ` R ) |
6 |
|
evl1varpw.e |
|- .^ = ( .g ` G ) |
7 |
|
evl1varpw.r |
|- ( ph -> R e. CRing ) |
8 |
|
evl1varpw.n |
|- ( ph -> N e. NN0 ) |
9 |
|
evl1scvarpw.t1 |
|- .X. = ( .s ` W ) |
10 |
|
evl1scvarpw.a |
|- ( ph -> A e. B ) |
11 |
|
evl1scvarpw.s |
|- S = ( R ^s B ) |
12 |
|
evl1scvarpw.t2 |
|- .xb = ( .r ` S ) |
13 |
|
evl1scvarpw.m |
|- M = ( mulGrp ` S ) |
14 |
|
evl1scvarpw.f |
|- F = ( .g ` M ) |
15 |
2
|
ply1assa |
|- ( R e. CRing -> W e. AssAlg ) |
16 |
7 15
|
syl |
|- ( ph -> W e. AssAlg ) |
17 |
10 5
|
eleqtrdi |
|- ( ph -> A e. ( Base ` R ) ) |
18 |
2
|
ply1sca |
|- ( R e. CRing -> R = ( Scalar ` W ) ) |
19 |
18
|
eqcomd |
|- ( R e. CRing -> ( Scalar ` W ) = R ) |
20 |
7 19
|
syl |
|- ( ph -> ( Scalar ` W ) = R ) |
21 |
20
|
fveq2d |
|- ( ph -> ( Base ` ( Scalar ` W ) ) = ( Base ` R ) ) |
22 |
17 21
|
eleqtrrd |
|- ( ph -> A e. ( Base ` ( Scalar ` W ) ) ) |
23 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
24 |
3 23
|
mgpbas |
|- ( Base ` W ) = ( Base ` G ) |
25 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
26 |
7 25
|
syl |
|- ( ph -> R e. Ring ) |
27 |
2
|
ply1ring |
|- ( R e. Ring -> W e. Ring ) |
28 |
26 27
|
syl |
|- ( ph -> W e. Ring ) |
29 |
3
|
ringmgp |
|- ( W e. Ring -> G e. Mnd ) |
30 |
28 29
|
syl |
|- ( ph -> G e. Mnd ) |
31 |
4 2 23
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` W ) ) |
32 |
26 31
|
syl |
|- ( ph -> X e. ( Base ` W ) ) |
33 |
24 6 30 8 32
|
mulgnn0cld |
|- ( ph -> ( N .^ X ) e. ( Base ` W ) ) |
34 |
|
eqid |
|- ( algSc ` W ) = ( algSc ` W ) |
35 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
36 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
37 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
38 |
34 35 36 23 37 9
|
asclmul1 |
|- ( ( W e. AssAlg /\ A e. ( Base ` ( Scalar ` W ) ) /\ ( N .^ X ) e. ( Base ` W ) ) -> ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) = ( A .X. ( N .^ X ) ) ) |
39 |
16 22 33 38
|
syl3anc |
|- ( ph -> ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) = ( A .X. ( N .^ X ) ) ) |
40 |
39
|
eqcomd |
|- ( ph -> ( A .X. ( N .^ X ) ) = ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) ) |
41 |
40
|
fveq2d |
|- ( ph -> ( Q ` ( A .X. ( N .^ X ) ) ) = ( Q ` ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) ) ) |
42 |
1 2 11 5
|
evl1rhm |
|- ( R e. CRing -> Q e. ( W RingHom S ) ) |
43 |
7 42
|
syl |
|- ( ph -> Q e. ( W RingHom S ) ) |
44 |
2
|
ply1lmod |
|- ( R e. Ring -> W e. LMod ) |
45 |
26 44
|
syl |
|- ( ph -> W e. LMod ) |
46 |
34 35 28 45 36 23
|
asclf |
|- ( ph -> ( algSc ` W ) : ( Base ` ( Scalar ` W ) ) --> ( Base ` W ) ) |
47 |
46 22
|
ffvelcdmd |
|- ( ph -> ( ( algSc ` W ) ` A ) e. ( Base ` W ) ) |
48 |
23 37 12
|
rhmmul |
|- ( ( Q e. ( W RingHom S ) /\ ( ( algSc ` W ) ` A ) e. ( Base ` W ) /\ ( N .^ X ) e. ( Base ` W ) ) -> ( Q ` ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) ) = ( ( Q ` ( ( algSc ` W ) ` A ) ) .xb ( Q ` ( N .^ X ) ) ) ) |
49 |
43 47 33 48
|
syl3anc |
|- ( ph -> ( Q ` ( ( ( algSc ` W ) ` A ) ( .r ` W ) ( N .^ X ) ) ) = ( ( Q ` ( ( algSc ` W ) ` A ) ) .xb ( Q ` ( N .^ X ) ) ) ) |
50 |
1 2 5 34
|
evl1sca |
|- ( ( R e. CRing /\ A e. B ) -> ( Q ` ( ( algSc ` W ) ` A ) ) = ( B X. { A } ) ) |
51 |
7 10 50
|
syl2anc |
|- ( ph -> ( Q ` ( ( algSc ` W ) ` A ) ) = ( B X. { A } ) ) |
52 |
1 2 3 4 5 6 7 8
|
evl1varpw |
|- ( ph -> ( Q ` ( N .^ X ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( Q ` X ) ) ) |
53 |
11
|
fveq2i |
|- ( mulGrp ` S ) = ( mulGrp ` ( R ^s B ) ) |
54 |
13 53
|
eqtri |
|- M = ( mulGrp ` ( R ^s B ) ) |
55 |
54
|
fveq2i |
|- ( .g ` M ) = ( .g ` ( mulGrp ` ( R ^s B ) ) ) |
56 |
14 55
|
eqtri |
|- F = ( .g ` ( mulGrp ` ( R ^s B ) ) ) |
57 |
56
|
a1i |
|- ( ph -> F = ( .g ` ( mulGrp ` ( R ^s B ) ) ) ) |
58 |
57
|
eqcomd |
|- ( ph -> ( .g ` ( mulGrp ` ( R ^s B ) ) ) = F ) |
59 |
58
|
oveqd |
|- ( ph -> ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( Q ` X ) ) = ( N F ( Q ` X ) ) ) |
60 |
52 59
|
eqtrd |
|- ( ph -> ( Q ` ( N .^ X ) ) = ( N F ( Q ` X ) ) ) |
61 |
51 60
|
oveq12d |
|- ( ph -> ( ( Q ` ( ( algSc ` W ) ` A ) ) .xb ( Q ` ( N .^ X ) ) ) = ( ( B X. { A } ) .xb ( N F ( Q ` X ) ) ) ) |
62 |
41 49 61
|
3eqtrd |
|- ( ph -> ( Q ` ( A .X. ( N .^ X ) ) ) = ( ( B X. { A } ) .xb ( N F ( Q ` X ) ) ) ) |