Step |
Hyp |
Ref |
Expression |
1 |
|
evl1varpw.q |
|- Q = ( eval1 ` R ) |
2 |
|
evl1varpw.w |
|- W = ( Poly1 ` R ) |
3 |
|
evl1varpw.g |
|- G = ( mulGrp ` W ) |
4 |
|
evl1varpw.x |
|- X = ( var1 ` R ) |
5 |
|
evl1varpw.b |
|- B = ( Base ` R ) |
6 |
|
evl1varpw.e |
|- .^ = ( .g ` G ) |
7 |
|
evl1varpw.r |
|- ( ph -> R e. CRing ) |
8 |
|
evl1varpw.n |
|- ( ph -> N e. NN0 ) |
9 |
|
evl1scvarpw.t1 |
|- .X. = ( .s ` W ) |
10 |
|
evl1scvarpw.a |
|- ( ph -> A e. B ) |
11 |
|
evl1scvarpwval.c |
|- ( ph -> C e. B ) |
12 |
|
evl1scvarpwval.h |
|- H = ( mulGrp ` R ) |
13 |
|
evl1scvarpwval.e |
|- E = ( .g ` H ) |
14 |
|
evl1scvarpwval.t |
|- .x. = ( .r ` R ) |
15 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
16 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
17 |
7 16
|
syl |
|- ( ph -> R e. Ring ) |
18 |
2
|
ply1ring |
|- ( R e. Ring -> W e. Ring ) |
19 |
17 18
|
syl |
|- ( ph -> W e. Ring ) |
20 |
3
|
ringmgp |
|- ( W e. Ring -> G e. Mnd ) |
21 |
19 20
|
syl |
|- ( ph -> G e. Mnd ) |
22 |
4 2 15
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` W ) ) |
23 |
17 22
|
syl |
|- ( ph -> X e. ( Base ` W ) ) |
24 |
3 15
|
mgpbas |
|- ( Base ` W ) = ( Base ` G ) |
25 |
24 6
|
mulgnn0cl |
|- ( ( G e. Mnd /\ N e. NN0 /\ X e. ( Base ` W ) ) -> ( N .^ X ) e. ( Base ` W ) ) |
26 |
21 8 23 25
|
syl3anc |
|- ( ph -> ( N .^ X ) e. ( Base ` W ) ) |
27 |
1 2 3 4 5 6 7 8 11 12 13
|
evl1varpwval |
|- ( ph -> ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) |
28 |
26 27
|
jca |
|- ( ph -> ( ( N .^ X ) e. ( Base ` W ) /\ ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) ) |
29 |
1 2 5 15 7 11 28 10 9 14
|
evl1vsd |
|- ( ph -> ( ( A .X. ( N .^ X ) ) e. ( Base ` W ) /\ ( ( Q ` ( A .X. ( N .^ X ) ) ) ` C ) = ( A .x. ( N E C ) ) ) ) |
30 |
29
|
simprd |
|- ( ph -> ( ( Q ` ( A .X. ( N .^ X ) ) ) ` C ) = ( A .x. ( N E C ) ) ) |