Step |
Hyp |
Ref |
Expression |
1 |
|
evl1addd.q |
|- O = ( eval1 ` R ) |
2 |
|
evl1addd.p |
|- P = ( Poly1 ` R ) |
3 |
|
evl1addd.b |
|- B = ( Base ` R ) |
4 |
|
evl1addd.u |
|- U = ( Base ` P ) |
5 |
|
evl1addd.1 |
|- ( ph -> R e. CRing ) |
6 |
|
evl1addd.2 |
|- ( ph -> Y e. B ) |
7 |
|
evl1addd.3 |
|- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
8 |
|
evl1addd.4 |
|- ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) ) |
9 |
|
evl1subd.s |
|- .- = ( -g ` P ) |
10 |
|
evl1subd.d |
|- D = ( -g ` R ) |
11 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
12 |
1 2 11 3
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
13 |
5 12
|
syl |
|- ( ph -> O e. ( P RingHom ( R ^s B ) ) ) |
14 |
|
rhmghm |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( P GrpHom ( R ^s B ) ) ) |
15 |
13 14
|
syl |
|- ( ph -> O e. ( P GrpHom ( R ^s B ) ) ) |
16 |
|
ghmgrp1 |
|- ( O e. ( P GrpHom ( R ^s B ) ) -> P e. Grp ) |
17 |
15 16
|
syl |
|- ( ph -> P e. Grp ) |
18 |
7
|
simpld |
|- ( ph -> M e. U ) |
19 |
8
|
simpld |
|- ( ph -> N e. U ) |
20 |
4 9
|
grpsubcl |
|- ( ( P e. Grp /\ M e. U /\ N e. U ) -> ( M .- N ) e. U ) |
21 |
17 18 19 20
|
syl3anc |
|- ( ph -> ( M .- N ) e. U ) |
22 |
|
eqid |
|- ( -g ` ( R ^s B ) ) = ( -g ` ( R ^s B ) ) |
23 |
4 9 22
|
ghmsub |
|- ( ( O e. ( P GrpHom ( R ^s B ) ) /\ M e. U /\ N e. U ) -> ( O ` ( M .- N ) ) = ( ( O ` M ) ( -g ` ( R ^s B ) ) ( O ` N ) ) ) |
24 |
15 18 19 23
|
syl3anc |
|- ( ph -> ( O ` ( M .- N ) ) = ( ( O ` M ) ( -g ` ( R ^s B ) ) ( O ` N ) ) ) |
25 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
26 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
27 |
5 25 26
|
3syl |
|- ( ph -> R e. Grp ) |
28 |
3
|
fvexi |
|- B e. _V |
29 |
28
|
a1i |
|- ( ph -> B e. _V ) |
30 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
31 |
4 30
|
rhmf |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
32 |
13 31
|
syl |
|- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
33 |
32 18
|
ffvelrnd |
|- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
34 |
32 19
|
ffvelrnd |
|- ( ph -> ( O ` N ) e. ( Base ` ( R ^s B ) ) ) |
35 |
11 30 10 22
|
pwssub |
|- ( ( ( R e. Grp /\ B e. _V ) /\ ( ( O ` M ) e. ( Base ` ( R ^s B ) ) /\ ( O ` N ) e. ( Base ` ( R ^s B ) ) ) ) -> ( ( O ` M ) ( -g ` ( R ^s B ) ) ( O ` N ) ) = ( ( O ` M ) oF D ( O ` N ) ) ) |
36 |
27 29 33 34 35
|
syl22anc |
|- ( ph -> ( ( O ` M ) ( -g ` ( R ^s B ) ) ( O ` N ) ) = ( ( O ` M ) oF D ( O ` N ) ) ) |
37 |
24 36
|
eqtrd |
|- ( ph -> ( O ` ( M .- N ) ) = ( ( O ` M ) oF D ( O ` N ) ) ) |
38 |
37
|
fveq1d |
|- ( ph -> ( ( O ` ( M .- N ) ) ` Y ) = ( ( ( O ` M ) oF D ( O ` N ) ) ` Y ) ) |
39 |
11 3 30 5 29 33
|
pwselbas |
|- ( ph -> ( O ` M ) : B --> B ) |
40 |
39
|
ffnd |
|- ( ph -> ( O ` M ) Fn B ) |
41 |
11 3 30 5 29 34
|
pwselbas |
|- ( ph -> ( O ` N ) : B --> B ) |
42 |
41
|
ffnd |
|- ( ph -> ( O ` N ) Fn B ) |
43 |
|
fnfvof |
|- ( ( ( ( O ` M ) Fn B /\ ( O ` N ) Fn B ) /\ ( B e. _V /\ Y e. B ) ) -> ( ( ( O ` M ) oF D ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) D ( ( O ` N ) ` Y ) ) ) |
44 |
40 42 29 6 43
|
syl22anc |
|- ( ph -> ( ( ( O ` M ) oF D ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) D ( ( O ` N ) ` Y ) ) ) |
45 |
7
|
simprd |
|- ( ph -> ( ( O ` M ) ` Y ) = V ) |
46 |
8
|
simprd |
|- ( ph -> ( ( O ` N ) ` Y ) = W ) |
47 |
45 46
|
oveq12d |
|- ( ph -> ( ( ( O ` M ) ` Y ) D ( ( O ` N ) ` Y ) ) = ( V D W ) ) |
48 |
38 44 47
|
3eqtrd |
|- ( ph -> ( ( O ` ( M .- N ) ) ` Y ) = ( V D W ) ) |
49 |
21 48
|
jca |
|- ( ph -> ( ( M .- N ) e. U /\ ( ( O ` ( M .- N ) ) ` Y ) = ( V D W ) ) ) |