Step |
Hyp |
Ref |
Expression |
1 |
|
evl1var.q |
|- O = ( eval1 ` R ) |
2 |
|
evl1var.v |
|- X = ( var1 ` R ) |
3 |
|
evl1var.b |
|- B = ( Base ` R ) |
4 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
5 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
6 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
7 |
2 5 6
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` ( Poly1 ` R ) ) ) |
8 |
4 7
|
syl |
|- ( R e. CRing -> X e. ( Base ` ( Poly1 ` R ) ) ) |
9 |
|
eqid |
|- ( 1o eval R ) = ( 1o eval R ) |
10 |
|
eqid |
|- ( 1o mPoly R ) = ( 1o mPoly R ) |
11 |
|
eqid |
|- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
12 |
5 11 6
|
ply1bas |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( 1o mPoly R ) ) |
13 |
1 9 3 10 12
|
evl1val |
|- ( ( R e. CRing /\ X e. ( Base ` ( Poly1 ` R ) ) ) -> ( O ` X ) = ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
14 |
8 13
|
mpdan |
|- ( R e. CRing -> ( O ` X ) = ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
15 |
|
df1o2 |
|- 1o = { (/) } |
16 |
3
|
fvexi |
|- B e. _V |
17 |
|
0ex |
|- (/) e. _V |
18 |
|
eqid |
|- ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) = ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) |
19 |
15 16 17 18
|
mapsncnv |
|- `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) = ( y e. B |-> ( 1o X. { y } ) ) |
20 |
19
|
coeq2i |
|- ( ( ( 1o eval R ) ` X ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) |
21 |
3
|
ressid |
|- ( R e. CRing -> ( R |`s B ) = R ) |
22 |
21
|
oveq2d |
|- ( R e. CRing -> ( 1o mVar ( R |`s B ) ) = ( 1o mVar R ) ) |
23 |
22
|
fveq1d |
|- ( R e. CRing -> ( ( 1o mVar ( R |`s B ) ) ` (/) ) = ( ( 1o mVar R ) ` (/) ) ) |
24 |
2
|
vr1val |
|- X = ( ( 1o mVar R ) ` (/) ) |
25 |
23 24
|
eqtr4di |
|- ( R e. CRing -> ( ( 1o mVar ( R |`s B ) ) ` (/) ) = X ) |
26 |
25
|
fveq2d |
|- ( R e. CRing -> ( ( 1o eval R ) ` ( ( 1o mVar ( R |`s B ) ) ` (/) ) ) = ( ( 1o eval R ) ` X ) ) |
27 |
9 3
|
evlval |
|- ( 1o eval R ) = ( ( 1o evalSub R ) ` B ) |
28 |
|
eqid |
|- ( 1o mVar ( R |`s B ) ) = ( 1o mVar ( R |`s B ) ) |
29 |
|
eqid |
|- ( R |`s B ) = ( R |`s B ) |
30 |
|
1on |
|- 1o e. On |
31 |
30
|
a1i |
|- ( R e. CRing -> 1o e. On ) |
32 |
|
id |
|- ( R e. CRing -> R e. CRing ) |
33 |
3
|
subrgid |
|- ( R e. Ring -> B e. ( SubRing ` R ) ) |
34 |
4 33
|
syl |
|- ( R e. CRing -> B e. ( SubRing ` R ) ) |
35 |
|
0lt1o |
|- (/) e. 1o |
36 |
35
|
a1i |
|- ( R e. CRing -> (/) e. 1o ) |
37 |
27 28 29 3 31 32 34 36
|
evlsvar |
|- ( R e. CRing -> ( ( 1o eval R ) ` ( ( 1o mVar ( R |`s B ) ) ` (/) ) ) = ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) |
38 |
26 37
|
eqtr3d |
|- ( R e. CRing -> ( ( 1o eval R ) ` X ) = ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) |
39 |
38
|
coeq1d |
|- ( R e. CRing -> ( ( ( 1o eval R ) ` X ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) ) |
40 |
20 39
|
eqtr3id |
|- ( R e. CRing -> ( ( ( 1o eval R ) ` X ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) ) |
41 |
15 16 17 18
|
mapsnf1o2 |
|- ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) : ( B ^m 1o ) -1-1-onto-> B |
42 |
|
f1ococnv2 |
|- ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) : ( B ^m 1o ) -1-1-onto-> B -> ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( _I |` B ) ) |
43 |
41 42
|
mp1i |
|- ( R e. CRing -> ( ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) o. `' ( z e. ( B ^m 1o ) |-> ( z ` (/) ) ) ) = ( _I |` B ) ) |
44 |
14 40 43
|
3eqtrd |
|- ( R e. CRing -> ( O ` X ) = ( _I |` B ) ) |