Step |
Hyp |
Ref |
Expression |
1 |
|
evl1var.q |
|- O = ( eval1 ` R ) |
2 |
|
evl1var.v |
|- X = ( var1 ` R ) |
3 |
|
evl1var.b |
|- B = ( Base ` R ) |
4 |
|
evl1vard.p |
|- P = ( Poly1 ` R ) |
5 |
|
evl1vard.u |
|- U = ( Base ` P ) |
6 |
|
evl1vard.1 |
|- ( ph -> R e. CRing ) |
7 |
|
evl1vard.2 |
|- ( ph -> Y e. B ) |
8 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
9 |
2 4 5
|
vr1cl |
|- ( R e. Ring -> X e. U ) |
10 |
6 8 9
|
3syl |
|- ( ph -> X e. U ) |
11 |
1 2 3
|
evl1var |
|- ( R e. CRing -> ( O ` X ) = ( _I |` B ) ) |
12 |
6 11
|
syl |
|- ( ph -> ( O ` X ) = ( _I |` B ) ) |
13 |
12
|
fveq1d |
|- ( ph -> ( ( O ` X ) ` Y ) = ( ( _I |` B ) ` Y ) ) |
14 |
|
fvresi |
|- ( Y e. B -> ( ( _I |` B ) ` Y ) = Y ) |
15 |
7 14
|
syl |
|- ( ph -> ( ( _I |` B ) ` Y ) = Y ) |
16 |
13 15
|
eqtrd |
|- ( ph -> ( ( O ` X ) ` Y ) = Y ) |
17 |
10 16
|
jca |
|- ( ph -> ( X e. U /\ ( ( O ` X ) ` Y ) = Y ) ) |