Description: Value of a univariate polynomial evaluation mapping the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evl1varpw.q | |- Q = ( eval1 ` R ) |
|
evl1varpw.w | |- W = ( Poly1 ` R ) |
||
evl1varpw.g | |- G = ( mulGrp ` W ) |
||
evl1varpw.x | |- X = ( var1 ` R ) |
||
evl1varpw.b | |- B = ( Base ` R ) |
||
evl1varpw.e | |- .^ = ( .g ` G ) |
||
evl1varpw.r | |- ( ph -> R e. CRing ) |
||
evl1varpw.n | |- ( ph -> N e. NN0 ) |
||
evl1varpwval.c | |- ( ph -> C e. B ) |
||
evl1varpwval.h | |- H = ( mulGrp ` R ) |
||
evl1varpwval.e | |- E = ( .g ` H ) |
||
Assertion | evl1varpwval | |- ( ph -> ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1varpw.q | |- Q = ( eval1 ` R ) |
|
2 | evl1varpw.w | |- W = ( Poly1 ` R ) |
|
3 | evl1varpw.g | |- G = ( mulGrp ` W ) |
|
4 | evl1varpw.x | |- X = ( var1 ` R ) |
|
5 | evl1varpw.b | |- B = ( Base ` R ) |
|
6 | evl1varpw.e | |- .^ = ( .g ` G ) |
|
7 | evl1varpw.r | |- ( ph -> R e. CRing ) |
|
8 | evl1varpw.n | |- ( ph -> N e. NN0 ) |
|
9 | evl1varpwval.c | |- ( ph -> C e. B ) |
|
10 | evl1varpwval.h | |- H = ( mulGrp ` R ) |
|
11 | evl1varpwval.e | |- E = ( .g ` H ) |
|
12 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
13 | 1 4 5 2 12 7 9 | evl1vard | |- ( ph -> ( X e. ( Base ` W ) /\ ( ( Q ` X ) ` C ) = C ) ) |
14 | 3 | fveq2i | |- ( .g ` G ) = ( .g ` ( mulGrp ` W ) ) |
15 | 6 14 | eqtri | |- .^ = ( .g ` ( mulGrp ` W ) ) |
16 | 10 | fveq2i | |- ( .g ` H ) = ( .g ` ( mulGrp ` R ) ) |
17 | 11 16 | eqtri | |- E = ( .g ` ( mulGrp ` R ) ) |
18 | 1 2 5 12 7 9 13 15 17 8 | evl1expd | |- ( ph -> ( ( N .^ X ) e. ( Base ` W ) /\ ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) ) |
19 | 18 | simprd | |- ( ph -> ( ( Q ` ( N .^ X ) ) ` C ) = ( N E C ) ) |