Step |
Hyp |
Ref |
Expression |
1 |
|
evl1addd.q |
|- O = ( eval1 ` R ) |
2 |
|
evl1addd.p |
|- P = ( Poly1 ` R ) |
3 |
|
evl1addd.b |
|- B = ( Base ` R ) |
4 |
|
evl1addd.u |
|- U = ( Base ` P ) |
5 |
|
evl1addd.1 |
|- ( ph -> R e. CRing ) |
6 |
|
evl1addd.2 |
|- ( ph -> Y e. B ) |
7 |
|
evl1addd.3 |
|- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
8 |
|
evl1vsd.4 |
|- ( ph -> N e. B ) |
9 |
|
evl1vsd.s |
|- .xb = ( .s ` P ) |
10 |
|
evl1vsd.t |
|- .x. = ( .r ` R ) |
11 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
12 |
1 2 3 11 4 5 8 6
|
evl1scad |
|- ( ph -> ( ( ( algSc ` P ) ` N ) e. U /\ ( ( O ` ( ( algSc ` P ) ` N ) ) ` Y ) = N ) ) |
13 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
14 |
1 2 3 4 5 6 12 7 13 10
|
evl1muld |
|- ( ph -> ( ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) e. U /\ ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( N .x. V ) ) ) |
15 |
2
|
ply1assa |
|- ( R e. CRing -> P e. AssAlg ) |
16 |
5 15
|
syl |
|- ( ph -> P e. AssAlg ) |
17 |
2
|
ply1sca |
|- ( R e. CRing -> R = ( Scalar ` P ) ) |
18 |
5 17
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
20 |
3 19
|
eqtrid |
|- ( ph -> B = ( Base ` ( Scalar ` P ) ) ) |
21 |
8 20
|
eleqtrd |
|- ( ph -> N e. ( Base ` ( Scalar ` P ) ) ) |
22 |
7
|
simpld |
|- ( ph -> M e. U ) |
23 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
24 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
25 |
11 23 24 4 13 9
|
asclmul1 |
|- ( ( P e. AssAlg /\ N e. ( Base ` ( Scalar ` P ) ) /\ M e. U ) -> ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) = ( N .xb M ) ) |
26 |
16 21 22 25
|
syl3anc |
|- ( ph -> ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) = ( N .xb M ) ) |
27 |
26
|
eleq1d |
|- ( ph -> ( ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) e. U <-> ( N .xb M ) e. U ) ) |
28 |
26
|
fveq2d |
|- ( ph -> ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) = ( O ` ( N .xb M ) ) ) |
29 |
28
|
fveq1d |
|- ( ph -> ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( ( O ` ( N .xb M ) ) ` Y ) ) |
30 |
29
|
eqeq1d |
|- ( ph -> ( ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( N .x. V ) <-> ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) |
31 |
27 30
|
anbi12d |
|- ( ph -> ( ( ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) e. U /\ ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( N .x. V ) ) <-> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) ) |
32 |
14 31
|
mpbid |
|- ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) |