| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1addd.q |  |-  O = ( eval1 ` R ) | 
						
							| 2 |  | evl1addd.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | evl1addd.b |  |-  B = ( Base ` R ) | 
						
							| 4 |  | evl1addd.u |  |-  U = ( Base ` P ) | 
						
							| 5 |  | evl1addd.1 |  |-  ( ph -> R e. CRing ) | 
						
							| 6 |  | evl1addd.2 |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | evl1addd.3 |  |-  ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) | 
						
							| 8 |  | evl1vsd.4 |  |-  ( ph -> N e. B ) | 
						
							| 9 |  | evl1vsd.s |  |-  .xb = ( .s ` P ) | 
						
							| 10 |  | evl1vsd.t |  |-  .x. = ( .r ` R ) | 
						
							| 11 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 12 | 1 2 3 11 4 5 8 6 | evl1scad |  |-  ( ph -> ( ( ( algSc ` P ) ` N ) e. U /\ ( ( O ` ( ( algSc ` P ) ` N ) ) ` Y ) = N ) ) | 
						
							| 13 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 14 | 1 2 3 4 5 6 12 7 13 10 | evl1muld |  |-  ( ph -> ( ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) e. U /\ ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( N .x. V ) ) ) | 
						
							| 15 | 2 | ply1assa |  |-  ( R e. CRing -> P e. AssAlg ) | 
						
							| 16 | 5 15 | syl |  |-  ( ph -> P e. AssAlg ) | 
						
							| 17 | 2 | ply1sca |  |-  ( R e. CRing -> R = ( Scalar ` P ) ) | 
						
							| 18 | 5 17 | syl |  |-  ( ph -> R = ( Scalar ` P ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 20 | 3 19 | eqtrid |  |-  ( ph -> B = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 21 | 8 20 | eleqtrd |  |-  ( ph -> N e. ( Base ` ( Scalar ` P ) ) ) | 
						
							| 22 | 7 | simpld |  |-  ( ph -> M e. U ) | 
						
							| 23 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 24 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 25 | 11 23 24 4 13 9 | asclmul1 |  |-  ( ( P e. AssAlg /\ N e. ( Base ` ( Scalar ` P ) ) /\ M e. U ) -> ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) = ( N .xb M ) ) | 
						
							| 26 | 16 21 22 25 | syl3anc |  |-  ( ph -> ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) = ( N .xb M ) ) | 
						
							| 27 | 26 | eleq1d |  |-  ( ph -> ( ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) e. U <-> ( N .xb M ) e. U ) ) | 
						
							| 28 | 26 | fveq2d |  |-  ( ph -> ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) = ( O ` ( N .xb M ) ) ) | 
						
							| 29 | 28 | fveq1d |  |-  ( ph -> ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( ( O ` ( N .xb M ) ) ` Y ) ) | 
						
							| 30 | 29 | eqeq1d |  |-  ( ph -> ( ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( N .x. V ) <-> ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) | 
						
							| 31 | 27 30 | anbi12d |  |-  ( ph -> ( ( ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) e. U /\ ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( N .x. V ) ) <-> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) ) | 
						
							| 32 | 14 31 | mpbid |  |-  ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) |