Metamath Proof Explorer


Theorem evlcl

Description: A polynomial over the ring R evaluates to an element in R . (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses evlcl.q
|- Q = ( I eval R )
evlcl.p
|- P = ( I mPoly R )
evlcl.b
|- B = ( Base ` P )
evlcl.k
|- K = ( Base ` R )
evlcl.i
|- ( ph -> I e. V )
evlcl.r
|- ( ph -> R e. CRing )
evlcl.f
|- ( ph -> F e. B )
evlcl.a
|- ( ph -> A e. ( K ^m I ) )
Assertion evlcl
|- ( ph -> ( ( Q ` F ) ` A ) e. K )

Proof

Step Hyp Ref Expression
1 evlcl.q
 |-  Q = ( I eval R )
2 evlcl.p
 |-  P = ( I mPoly R )
3 evlcl.b
 |-  B = ( Base ` P )
4 evlcl.k
 |-  K = ( Base ` R )
5 evlcl.i
 |-  ( ph -> I e. V )
6 evlcl.r
 |-  ( ph -> R e. CRing )
7 evlcl.f
 |-  ( ph -> F e. B )
8 evlcl.a
 |-  ( ph -> A e. ( K ^m I ) )
9 eqid
 |-  ( R ^s ( K ^m I ) ) = ( R ^s ( K ^m I ) )
10 eqid
 |-  ( Base ` ( R ^s ( K ^m I ) ) ) = ( Base ` ( R ^s ( K ^m I ) ) )
11 ovexd
 |-  ( ph -> ( K ^m I ) e. _V )
12 1 4 2 9 evlrhm
 |-  ( ( I e. V /\ R e. CRing ) -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) )
13 5 6 12 syl2anc
 |-  ( ph -> Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) )
14 3 10 rhmf
 |-  ( Q e. ( P RingHom ( R ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) )
15 13 14 syl
 |-  ( ph -> Q : B --> ( Base ` ( R ^s ( K ^m I ) ) ) )
16 15 7 ffvelcdmd
 |-  ( ph -> ( Q ` F ) e. ( Base ` ( R ^s ( K ^m I ) ) ) )
17 9 4 10 6 11 16 pwselbas
 |-  ( ph -> ( Q ` F ) : ( K ^m I ) --> K )
18 17 8 ffvelcdmd
 |-  ( ph -> ( ( Q ` F ) ` A ) e. K )