Step |
Hyp |
Ref |
Expression |
1 |
|
evlmulval.q |
|- Q = ( I eval S ) |
2 |
|
evlmulval.p |
|- P = ( I mPoly S ) |
3 |
|
evlmulval.k |
|- K = ( Base ` S ) |
4 |
|
evlmulval.b |
|- B = ( Base ` P ) |
5 |
|
evlmulval.g |
|- .xb = ( .r ` P ) |
6 |
|
evlmulval.f |
|- .x. = ( .r ` S ) |
7 |
|
evlmulval.i |
|- ( ph -> I e. Z ) |
8 |
|
evlmulval.s |
|- ( ph -> S e. CRing ) |
9 |
|
evlmulval.a |
|- ( ph -> A e. ( K ^m I ) ) |
10 |
|
evlmulval.m |
|- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
11 |
|
evlmulval.n |
|- ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) ) |
12 |
|
eqid |
|- ( S ^s ( K ^m I ) ) = ( S ^s ( K ^m I ) ) |
13 |
1 3 2 12
|
evlrhm |
|- ( ( I e. Z /\ S e. CRing ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
14 |
7 8 13
|
syl2anc |
|- ( ph -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
15 |
|
rhmrcl1 |
|- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> P e. Ring ) |
16 |
14 15
|
syl |
|- ( ph -> P e. Ring ) |
17 |
10
|
simpld |
|- ( ph -> M e. B ) |
18 |
11
|
simpld |
|- ( ph -> N e. B ) |
19 |
4 5 16 17 18
|
ringcld |
|- ( ph -> ( M .xb N ) e. B ) |
20 |
|
eqid |
|- ( .r ` ( S ^s ( K ^m I ) ) ) = ( .r ` ( S ^s ( K ^m I ) ) ) |
21 |
4 5 20
|
rhmmul |
|- ( ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) /\ M e. B /\ N e. B ) -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
22 |
14 17 18 21
|
syl3anc |
|- ( ph -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
23 |
|
eqid |
|- ( Base ` ( S ^s ( K ^m I ) ) ) = ( Base ` ( S ^s ( K ^m I ) ) ) |
24 |
|
ovexd |
|- ( ph -> ( K ^m I ) e. _V ) |
25 |
4 23
|
rhmf |
|- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
26 |
14 25
|
syl |
|- ( ph -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
27 |
26 17
|
ffvelcdmd |
|- ( ph -> ( Q ` M ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
28 |
26 18
|
ffvelcdmd |
|- ( ph -> ( Q ` N ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
29 |
12 23 8 24 27 28 6 20
|
pwsmulrval |
|- ( ph -> ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) = ( ( Q ` M ) oF .x. ( Q ` N ) ) ) |
30 |
22 29
|
eqtrd |
|- ( ph -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) oF .x. ( Q ` N ) ) ) |
31 |
30
|
fveq1d |
|- ( ph -> ( ( Q ` ( M .xb N ) ) ` A ) = ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) ) |
32 |
12 3 23 8 24 27
|
pwselbas |
|- ( ph -> ( Q ` M ) : ( K ^m I ) --> K ) |
33 |
32
|
ffnd |
|- ( ph -> ( Q ` M ) Fn ( K ^m I ) ) |
34 |
12 3 23 8 24 28
|
pwselbas |
|- ( ph -> ( Q ` N ) : ( K ^m I ) --> K ) |
35 |
34
|
ffnd |
|- ( ph -> ( Q ` N ) Fn ( K ^m I ) ) |
36 |
|
fnfvof |
|- ( ( ( ( Q ` M ) Fn ( K ^m I ) /\ ( Q ` N ) Fn ( K ^m I ) ) /\ ( ( K ^m I ) e. _V /\ A e. ( K ^m I ) ) ) -> ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) ) |
37 |
33 35 24 9 36
|
syl22anc |
|- ( ph -> ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) ) |
38 |
10
|
simprd |
|- ( ph -> ( ( Q ` M ) ` A ) = V ) |
39 |
11
|
simprd |
|- ( ph -> ( ( Q ` N ) ` A ) = W ) |
40 |
38 39
|
oveq12d |
|- ( ph -> ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) = ( V .x. W ) ) |
41 |
31 37 40
|
3eqtrd |
|- ( ph -> ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) |
42 |
19 41
|
jca |
|- ( ph -> ( ( M .xb N ) e. B /\ ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) ) |