Step |
Hyp |
Ref |
Expression |
1 |
|
evlval.q |
|- Q = ( I eval R ) |
2 |
|
evlval.b |
|- B = ( Base ` R ) |
3 |
|
evlrhm.w |
|- W = ( I mPoly R ) |
4 |
|
evlrhm.t |
|- T = ( R ^s ( B ^m I ) ) |
5 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
6 |
5
|
adantl |
|- ( ( I e. V /\ R e. CRing ) -> R e. Ring ) |
7 |
2
|
subrgid |
|- ( R e. Ring -> B e. ( SubRing ` R ) ) |
8 |
6 7
|
syl |
|- ( ( I e. V /\ R e. CRing ) -> B e. ( SubRing ` R ) ) |
9 |
1 2
|
evlval |
|- Q = ( ( I evalSub R ) ` B ) |
10 |
|
eqid |
|- ( I mPoly ( R |`s B ) ) = ( I mPoly ( R |`s B ) ) |
11 |
|
eqid |
|- ( R |`s B ) = ( R |`s B ) |
12 |
9 10 11 4 2
|
evlsrhm |
|- ( ( I e. V /\ R e. CRing /\ B e. ( SubRing ` R ) ) -> Q e. ( ( I mPoly ( R |`s B ) ) RingHom T ) ) |
13 |
8 12
|
mpd3an3 |
|- ( ( I e. V /\ R e. CRing ) -> Q e. ( ( I mPoly ( R |`s B ) ) RingHom T ) ) |
14 |
2
|
ressid |
|- ( R e. CRing -> ( R |`s B ) = R ) |
15 |
14
|
adantl |
|- ( ( I e. V /\ R e. CRing ) -> ( R |`s B ) = R ) |
16 |
15
|
oveq2d |
|- ( ( I e. V /\ R e. CRing ) -> ( I mPoly ( R |`s B ) ) = ( I mPoly R ) ) |
17 |
16 3
|
eqtr4di |
|- ( ( I e. V /\ R e. CRing ) -> ( I mPoly ( R |`s B ) ) = W ) |
18 |
17
|
oveq1d |
|- ( ( I e. V /\ R e. CRing ) -> ( ( I mPoly ( R |`s B ) ) RingHom T ) = ( W RingHom T ) ) |
19 |
13 18
|
eleqtrd |
|- ( ( I e. V /\ R e. CRing ) -> Q e. ( W RingHom T ) ) |