Step |
Hyp |
Ref |
Expression |
1 |
|
evls1expd.q |
|- Q = ( S evalSub1 R ) |
2 |
|
evls1expd.k |
|- K = ( Base ` S ) |
3 |
|
evls1expd.w |
|- W = ( Poly1 ` U ) |
4 |
|
evls1expd.u |
|- U = ( S |`s R ) |
5 |
|
evls1expd.b |
|- B = ( Base ` W ) |
6 |
|
evls1expd.s |
|- ( ph -> S e. CRing ) |
7 |
|
evls1expd.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
8 |
|
evls1expd.1 |
|- ./\ = ( .g ` ( mulGrp ` W ) ) |
9 |
|
evls1expd.2 |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
10 |
|
evls1expd.n |
|- ( ph -> N e. NN0 ) |
11 |
|
evls1expd.m |
|- ( ph -> M e. B ) |
12 |
|
evls1expd.c |
|- ( ph -> C e. K ) |
13 |
|
eqid |
|- ( mulGrp ` W ) = ( mulGrp ` W ) |
14 |
1 4 3 13 2 5 8 6 7 10 11
|
evls1pw |
|- ( ph -> ( Q ` ( N ./\ M ) ) = ( N ( .g ` ( mulGrp ` ( S ^s K ) ) ) ( Q ` M ) ) ) |
15 |
14
|
fveq1d |
|- ( ph -> ( ( Q ` ( N ./\ M ) ) ` C ) = ( ( N ( .g ` ( mulGrp ` ( S ^s K ) ) ) ( Q ` M ) ) ` C ) ) |
16 |
|
eqid |
|- ( S ^s K ) = ( S ^s K ) |
17 |
|
eqid |
|- ( Base ` ( S ^s K ) ) = ( Base ` ( S ^s K ) ) |
18 |
|
eqid |
|- ( mulGrp ` ( S ^s K ) ) = ( mulGrp ` ( S ^s K ) ) |
19 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
20 |
|
eqid |
|- ( .g ` ( mulGrp ` ( S ^s K ) ) ) = ( .g ` ( mulGrp ` ( S ^s K ) ) ) |
21 |
6
|
crngringd |
|- ( ph -> S e. Ring ) |
22 |
2
|
fvexi |
|- K e. _V |
23 |
22
|
a1i |
|- ( ph -> K e. _V ) |
24 |
1 2 16 4 3
|
evls1rhm |
|- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
25 |
6 7 24
|
syl2anc |
|- ( ph -> Q e. ( W RingHom ( S ^s K ) ) ) |
26 |
5 17
|
rhmf |
|- ( Q e. ( W RingHom ( S ^s K ) ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
27 |
25 26
|
syl |
|- ( ph -> Q : B --> ( Base ` ( S ^s K ) ) ) |
28 |
27 11
|
ffvelcdmd |
|- ( ph -> ( Q ` M ) e. ( Base ` ( S ^s K ) ) ) |
29 |
16 17 18 19 20 9 21 23 10 28 12
|
pwsexpg |
|- ( ph -> ( ( N ( .g ` ( mulGrp ` ( S ^s K ) ) ) ( Q ` M ) ) ` C ) = ( N .^ ( ( Q ` M ) ` C ) ) ) |
30 |
15 29
|
eqtrd |
|- ( ph -> ( ( Q ` ( N ./\ M ) ) ` C ) = ( N .^ ( ( Q ` M ) ` C ) ) ) |