Step |
Hyp |
Ref |
Expression |
1 |
|
evls1fn.o |
|- O = ( R evalSub1 S ) |
2 |
|
evls1fn.p |
|- P = ( Poly1 ` ( R |`s S ) ) |
3 |
|
evls1fn.u |
|- U = ( Base ` P ) |
4 |
|
evls1fn.1 |
|- ( ph -> R e. CRing ) |
5 |
|
evls1fn.2 |
|- ( ph -> S e. ( SubRing ` R ) ) |
6 |
|
evls1fvf.b |
|- B = ( Base ` R ) |
7 |
|
evls1fvf.q |
|- ( ph -> Q e. U ) |
8 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
9 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
10 |
6
|
fvexi |
|- B e. _V |
11 |
10
|
a1i |
|- ( ph -> B e. _V ) |
12 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
13 |
1 6 8 12 2
|
evls1rhm |
|- ( ( R e. CRing /\ S e. ( SubRing ` R ) ) -> O e. ( P RingHom ( R ^s B ) ) ) |
14 |
4 5 13
|
syl2anc |
|- ( ph -> O e. ( P RingHom ( R ^s B ) ) ) |
15 |
3 9
|
rhmf |
|- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
16 |
14 15
|
syl |
|- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
17 |
16 7
|
ffvelcdmd |
|- ( ph -> ( O ` Q ) e. ( Base ` ( R ^s B ) ) ) |
18 |
8 6 9 4 11 17
|
pwselbas |
|- ( ph -> ( O ` Q ) : B --> B ) |